add orno driver

This commit is contained in:
2025-06-08 18:35:32 +01:00
parent 03de00b93f
commit 12dfa85820
17 changed files with 1689 additions and 673 deletions

View File

@@ -1,30 +1,13 @@
#include "evsemeter.h" #include "evsemeter.h"
#include "esp_event.h" #include "esp_event.h"
#include "esp_log.h" #include "esp_log.h"
#include "ade7758.h" #include "meter_ade7758.h"
#define PIN_NUM_CLK 15
#define PIN_NUM_MOSI 2
#define PIN_NUM_MISO 4
#define PIN_NUM_CS 23
#define EEPROM_HOST HSPI_HOST
#define IRMS_CAL 53416.0f
static const char *TAG = "evsemeter_ade7758"; static const char *TAG = "evsemeter_ade7758";
esp_err_t evsemeter_init(void) esp_err_t evsemeter_init(void)
{ {
ESP_LOGI(TAG, "Initializing EVSE meter (ADE7758)"); ESP_LOGI(TAG, "Initializing EVSE meter (ADE7758)");
ESP_ERROR_CHECK(Init(EEPROM_HOST, PIN_NUM_MISO, PIN_NUM_MOSI, PIN_NUM_CLK));
ESP_ERROR_CHECK(InitSpi(PIN_NUM_CS));
gainSetup(INTEGRATOR_OFF, FULLSCALESELECT_0_5V, GAIN_1, GAIN_1);
setupDivs(1, 1, 1);
setLcycMode(0x00);
resetStatus();
return ESP_OK; return ESP_OK;
} }
@@ -34,7 +17,6 @@ esp_err_t evsemeter_read_current(float *current)
return ESP_ERR_INVALID_ARG; return ESP_ERR_INVALID_ARG;
} }
*current = airms() / IRMS_CAL;
esp_event_post(EVSEMETER_EVENT, EVSEMETER_EVENT_UPDATE, current, sizeof(float), portMAX_DELAY); esp_event_post(EVSEMETER_EVENT, EVSEMETER_EVENT_UPDATE, current, sizeof(float), portMAX_DELAY);
return ESP_OK; return ESP_OK;
} }

View File

@@ -1,8 +1,7 @@
idf_component_register( idf_component_register(
SRCS SRCS
"src/ade7758.c" "src/ade7758.c"
"src/meter.c" "src/meter_ade7758.c"
"src/energy_meter.c"
INCLUDE_DIRS INCLUDE_DIRS
"include" "include"
REQUIRES REQUIRES

View File

@@ -1,108 +0,0 @@
#ifndef METER_H_
#define METER_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
/**
* @brief Grid energy meter model
*/
typedef enum {
ENERGY_METER_NONE,
ENERGY_METER_ORNO_515,
ENERGY_METER_ORNO_517,
} meter_model_t;
/**
* @brief Estrutura com os dados de medição trifásica.
*/
typedef struct MeterData
{
float vrmsA;
float vrmsB;
float vrmsC;
float irmsA;
float irmsB;
float irmsC;
int32_t wattA;
int32_t varA;
int32_t vaA;
int32_t wattB;
int32_t varB;
int32_t vaB;
int32_t wattC;
int32_t varC;
int32_t vaC;
} MeterData;
/**
* @brief Inicializa o hardware do medidor e recursos internos (SPI, mutex).
*/
void meter_init(void);
/**
* @brief Inicia a task de medição.
*/
void meter_start(void);
/**
* @brief Para a task de medição e reseta dados.
*/
void meter_stop(void);
/**
* @brief Zera todos os campos da estrutura de dados do medidor.
*/
void meter_initData(void);
/**
* @brief Retorna uma cópia segura dos dados atuais do medidor.
*
* @return MeterData Cópia da última leitura válida.
*/
MeterData meter_getData(void);
/**
* @brief Check if meter task is currently running.
*
* @return true if running, false otherwise.
*/
bool meter_is_running(void);
// High level energy meter API
void energy_meter_init(void);
bool meter_get_state(void);
esp_err_t meter_set_state(bool _state);
meter_model_t meter_get_model(void);
esp_err_t meter_set_model(meter_model_t mode);
void energy_meter_start_session(void);
void energy_meter_stop_session(void);
void energy_meter_process(bool charging, uint16_t charging_current);
uint32_t energy_meter_get_power(void);
uint32_t energy_meter_get_session_time(void);
uint32_t energy_meter_get_charging_time(void);
uint32_t energy_meter_get_consumption(void);
void energy_meter_get_voltage(float *voltage);
float energy_meter_get_l1_voltage(void);
float energy_meter_get_l2_voltage(void);
float energy_meter_get_l3_voltage(void);
void energy_meter_get_current(float *current);
float energy_meter_get_l1_current(void);
float energy_meter_get_l2_current(void);
float energy_meter_get_l3_current(void);
const char *meter_model_to_str(meter_model_t mode);
meter_model_t meter_str_to_model(const char *str);
const char *meter_state_to_str(bool state);
bool meter_str_to_state(const char *str);
#ifdef __cplusplus
}
#endif
#endif /* METER_H_ */

View File

@@ -0,0 +1,70 @@
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
/**
* @brief Inicializa o driver do medidor (SPI, mutex, registradores ADE7758).
*/
esp_err_t meter_init(void);
/**
* @brief Inicia a tarefa de leitura de dados do medidor.
*/
esp_err_t meter_start(void);
/**
* @brief Para a tarefa de leitura e limpa os dados internos.
*/
void meter_stop(void);
/**
* @brief Verifica se o medidor está em execução.
*
* @return true se a tarefa estiver ativa, false caso contrário.
*/
bool meter_is_running(void);
/**
* @brief Limpa os dados armazenados no medidor (zera todos os valores).
*/
void meter_clear_data(void);
// ----- Leituras por fase (L1, L2, L3) -----
// Tensão RMS (em volts)
float meter_get_vrms_l1(void);
float meter_get_vrms_l2(void);
float meter_get_vrms_l3(void);
// Corrente RMS (em amperes)
float meter_get_irms_l1(void);
float meter_get_irms_l2(void);
float meter_get_irms_l3(void);
// Potência ativa (W)
int meter_get_watt_l1(void);
int meter_get_watt_l2(void);
int meter_get_watt_l3(void);
// Potência reativa (VAR)
int meter_get_var_l1(void);
int meter_get_var_l2(void);
int meter_get_var_l3(void);
// Potência aparente (VA)
int meter_get_va_l1(void);
int meter_get_va_l2(void);
int meter_get_va_l3(void);
// (Opcional) contador de watchdog para diagnóstico
uint32_t meter_get_watchdog_counter(void);
#ifdef __cplusplus
}
#endif

View File

@@ -1,237 +0,0 @@
#include <memory.h>
#include <math.h>
#include <stdbool.h> // <- Necessário para bool
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "nvs.h"
#include "meter.h"
#include "orno_modbus.h"
#define NVS_NAMESPACE "evse_emeter"
#define NVS_MODEL "model"
#define NVS_STATE "state"
static const char *TAG = "energy_meter";
static nvs_handle nvs;
static bool state = false;
static meter_model_t model = ENERGY_METER_NONE;
static uint16_t power = 0;
static bool has_session = false;
static int64_t start_time = 0;
static uint32_t charging_time = 0; // ms
static uint32_t consumption = 0; // Ws
static float cur[3] = {0, 0, 0};
static float vlt[3] = {0, 0, 0};
static int64_t prev_time = 0;
static void set_calc_power(float p, uint32_t delta_ms)
{
consumption += roundf((p * delta_ms) / 1000.0f);
power = roundf(p);
}
void energy_meter_init(void)
{
ESP_LOGI(TAG, "energy_meter_init");
ESP_ERROR_CHECK(nvs_open(NVS_NAMESPACE, NVS_READWRITE, &nvs));
uint8_t u8 = ENERGY_METER_NONE;
nvs_get_u8(nvs, NVS_MODEL, &u8);
model = u8;
}
bool meter_get_state(void)
{
return orno_modbus_get_meter_state();
}
esp_err_t meter_set_state(bool _state)
{
state = _state;
nvs_set_u8(nvs, NVS_STATE, state);
nvs_commit(nvs);
return ESP_OK;
}
meter_model_t meter_get_model(void)
{
return model;
}
esp_err_t meter_set_model(meter_model_t _model)
{
ESP_LOGI(TAG, "meter_set_model");
if (_model < 0 || _model > ENERGY_METER_ORNO_517) {
ESP_LOGE(TAG, "Model out of range");
return ESP_ERR_INVALID_ARG;
}
model = _model;
nvs_set_u8(nvs, NVS_MODEL, model);
nvs_commit(nvs);
orno_modbus_set_model(model != ENERGY_METER_NONE);
return ESP_OK;
}
void energy_meter_start_session(void)
{
if (!has_session) {
ESP_LOGI(TAG, "Start session");
start_time = esp_timer_get_time();
has_session = true;
//meter_start();
}
}
void energy_meter_stop_session(void)
{
if (has_session) {
ESP_LOGI(TAG, "Stop session");
start_time = 0;
consumption = 0;
charging_time = 0;
has_session = false;
//meter_stop();
}
}
void energy_meter_process(bool charging, uint16_t charging_current)
{
int64_t now = esp_timer_get_time();
uint32_t delta_ms = (now - prev_time) / 1000;
if (charging && meter_is_running()) {
MeterData data = meter_getData();
vlt[0] = data.vrmsA;
vlt[1] = data.vrmsB;
vlt[2] = data.vrmsC;
cur[0] = data.irmsA;
cur[1] = data.irmsB;
cur[2] = data.irmsC;
uint32_t total_power = data.wattA + data.wattB + data.wattC;
set_calc_power((float)total_power, delta_ms);
charging_time += delta_ms;
} else {
vlt[0] = vlt[1] = vlt[2] = 0;
cur[0] = cur[1] = cur[2] = 0;
power = 0;
}
prev_time = now;
}
uint32_t energy_meter_get_power(void)
{
return power;
}
uint32_t energy_meter_get_session_time(void)
{
return has_session ? (esp_timer_get_time() - start_time) / 1000000 : 0;
}
uint32_t energy_meter_get_charging_time(void)
{
return charging_time / 1000;
}
uint32_t energy_meter_get_consumption(void)
{
return consumption / 3600;
}
void energy_meter_get_voltage(float *voltage)
{
memcpy(voltage, vlt, sizeof(vlt));
}
float energy_meter_get_l1_voltage(void)
{
return vlt[0];
}
float energy_meter_get_l2_voltage(void)
{
return vlt[1];
}
float energy_meter_get_l3_voltage(void)
{
return vlt[2];
}
void energy_meter_get_current(float *current)
{
memcpy(current, cur, sizeof(cur));
}
float energy_meter_get_l1_current(void)
{
return cur[0];
}
float energy_meter_get_l2_current(void)
{
return cur[1];
}
float energy_meter_get_l3_current(void)
{
return cur[2];
}
const char *meter_state_to_str(bool state)
{
return state == true ? "CONNECTED" : "NOT CONNECTED";
}
const char *meter_model_to_str(meter_model_t mode)
{
switch (mode)
{
case ENERGY_METER_NONE:
return "NONE";
case ENERGY_METER_ORNO_515:
return "OR-WE-515";
case ENERGY_METER_ORNO_517:
return "OR-WE-517";
default:
return "NONE";
}
}
meter_model_t meter_str_to_model(const char *str)
{
if (!strcmp(str, "NONE"))
{
return ENERGY_METER_NONE;
}
if (!strcmp(str, "OR-WE-515"))
{
return ENERGY_METER_ORNO_515;
}
if (!strcmp(str, "OR-WE-517"))
{
return ENERGY_METER_ORNO_517;
}
return ENERGY_METER_NONE;
}
bool meter_str_to_state(const char *str)
{
return strcmp(str, "CONNECTED") == 0;
}

View File

@@ -1,174 +0,0 @@
#include "meter.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "esp_log.h"
#include "esp_system.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "driver/spi_master.h"
#include "driver/gpio.h"
#include "ade7758.h"
#include "evse_api.h"
#define TAG "meter"
// SPI Config
#define PIN_NUM_CLK 15
#define PIN_NUM_MOSI 2
#define PIN_NUM_MISO 4
#define PIN_NUM_CS 23
#define EEPROM_HOST HSPI_HOST
// Calibration constants
#define VRMS_CAL 4732.78f
#define IRMS_CAL 53416.0f
#define METER_READ_INTERVAL_MS 5000
static TaskHandle_t meter_task = NULL;
static MeterData metervalue;
static SemaphoreHandle_t meter_mutex = NULL;
static uint32_t meter_watchdog_counter = 0;
void meter_initData(void) {
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
memset(&metervalue, 0, sizeof(metervalue));
xSemaphoreGive(meter_mutex);
} else {
ESP_LOGE(TAG, "Falha ao adquirir semáforo para zerar dados.");
}
}
MeterData meter_getData(void) {
MeterData copy;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
copy = metervalue;
xSemaphoreGive(meter_mutex);
} else {
ESP_LOGE(TAG, "Falha ao adquirir semáforo para leitura de dados.");
memset(&copy, 0, sizeof(copy));
}
return copy;
}
bool meter_is_running(void) {
return meter_task != NULL;
}
uint32_t meter_get_watchdog_counter(void) {
return meter_watchdog_counter;
}
static void meter_task_func(void *param) {
ESP_LOGI(TAG, "Meter task started");
MeterData previousData = {0};
bool dataChanged = false;
while (true) {
if (evse_state_is_charging(evse_get_state())) {
MeterData local = {0};
local.vrmsA = avrms() / VRMS_CAL;
local.vrmsB = bvrms() / VRMS_CAL;
local.vrmsC = cvrms() / VRMS_CAL;
local.irmsA = airms() / IRMS_CAL;
local.irmsB = birms() / IRMS_CAL;
local.irmsC = cirms() / IRMS_CAL;
ESP_LOGD(TAG, "VRMS: A=%.2f, B=%.2f, C=%.2f", local.vrmsA, local.vrmsB, local.vrmsC);
ESP_LOGD(TAG, "IRMS: A=%.2f, B=%.2f, C=%.2f", local.irmsA, local.irmsB, local.irmsC);
if (setPotLine(PHASE_A, 20)) {
local.wattA = getWatt(PHASE_A);
ESP_LOGD(TAG, "Watt A: %" PRIi32, local.wattA);
}
if (setPotLine(PHASE_B, 20)) {
local.wattB = getWatt(PHASE_B);
ESP_LOGD(TAG, "Watt B: %" PRIi32, local.wattB);
}
if (setPotLine(PHASE_C, 20)) {
local.wattC = getWatt(PHASE_C);
ESP_LOGI(TAG, "Watt C: %" PRIi32, local.wattC);
}
// Verifique se os dados mudaram antes de atualizar
if (memcmp(&local, &previousData, sizeof(MeterData)) != 0) {
dataChanged = true;
previousData = local;
} else {
dataChanged = false;
}
if (dataChanged && xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
metervalue = local;
meter_watchdog_counter++;
xSemaphoreGive(meter_mutex);
}
}
vTaskDelay(pdMS_TO_TICKS(METER_READ_INTERVAL_MS));
}
}
void Calibrate_ADE7758(void) {
gainSetup(INTEGRATOR_OFF, FULLSCALESELECT_0_5V, GAIN_1, GAIN_1);
setupDivs(1, 1, 1);
setLcycMode(0x00);
resetStatus();
}
void meter_init(void) {
ESP_LOGI(TAG, "Initializing meter");
if (!meter_mutex) {
meter_mutex = xSemaphoreCreateMutex();
if (!meter_mutex) {
ESP_LOGE(TAG, "Erro ao criar semáforo de mutex");
return; // Pode parar a inicialização caso não consiga criar o mutex
}
}
meter_initData();
esp_err_t err = Init(EEPROM_HOST, PIN_NUM_MISO, PIN_NUM_MOSI, PIN_NUM_CLK);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Erro na inicialização do hardware SPI: %d", err);
return;
}
InitSpi(PIN_NUM_CS);
}
void meter_start(void) {
ESP_LOGI(TAG, "Starting meter");
Calibrate_ADE7758();
meter_initData();
if (!meter_task) {
xTaskCreate(meter_task_func, "meter_task", 5 * 1024, NULL, 5, &meter_task);
}
}
void meter_stop(void) {
ESP_LOGI(TAG, "Stopping meter");
if (meter_task) {
vTaskDelete(meter_task);
meter_task = NULL;
}
meter_initData();
}

View File

@@ -0,0 +1,177 @@
#include "meter_ade7758.h"
#include "ade7758.h"
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "esp_log.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "driver/spi_master.h"
#define TAG "meter"
// === Configurações de hardware ===
#define PIN_NUM_CLK 15
#define PIN_NUM_MOSI 2
#define PIN_NUM_MISO 4
#define PIN_NUM_CS 23
#define EEPROM_HOST HSPI_HOST
// === Constantes de calibração ===
#define VRMS_CAL 4732.78f
#define IRMS_CAL 53416.0f
#define METER_READ_INTERVAL_MS 5000
// === Dados internos ===
typedef struct {
float vrms[3];
float irms[3];
int watt[3];
int var[3]; // reservados
int va[3]; // reservados
} meter_internal_data_t;
static meter_internal_data_t meter_data;
static TaskHandle_t meter_task = NULL;
static SemaphoreHandle_t meter_mutex = NULL;
static uint32_t meter_watchdog_counter = 0;
// === Utilitários internos ===
static void meter_clear_internal_data(void) {
if (meter_mutex && xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
memset(&meter_data, 0, sizeof(meter_data));
xSemaphoreGive(meter_mutex);
}
}
static bool meter_read_internal(meter_internal_data_t *out) {
if (!out) return false;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
*out = meter_data;
xSemaphoreGive(meter_mutex);
return true;
}
return false;
}
static void meter_task_func(void *param) {
ESP_LOGI(TAG, "Meter task started");
meter_internal_data_t previous = {0};
while (true) {
meter_internal_data_t current = {0};
current.vrms[0] = avrms() / VRMS_CAL;
current.vrms[1] = bvrms() / VRMS_CAL;
current.vrms[2] = cvrms() / VRMS_CAL;
current.irms[0] = airms() / IRMS_CAL;
current.irms[1] = birms() / IRMS_CAL;
current.irms[2] = cirms() / IRMS_CAL;
if (setPotLine(PHASE_A, 20)) current.watt[0] = getWatt(PHASE_A);
if (setPotLine(PHASE_B, 20)) current.watt[1] = getWatt(PHASE_B);
if (setPotLine(PHASE_C, 20)) current.watt[2] = getWatt(PHASE_C);
if (memcmp(&previous, &current, sizeof(current)) != 0) {
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
meter_data = current;
meter_watchdog_counter++;
xSemaphoreGive(meter_mutex);
}
previous = current;
}
vTaskDelay(pdMS_TO_TICKS(METER_READ_INTERVAL_MS));
}
}
// === Interface pública: controle ===
esp_err_t meter_init(void) {
ESP_LOGI(TAG, "Inicializando medidor...");
if (!meter_mutex) {
meter_mutex = xSemaphoreCreateMutex();
if (!meter_mutex) {
ESP_LOGE(TAG, "Falha ao criar mutex");
return ESP_ERR_NO_MEM;
}
}
meter_clear_internal_data();
esp_err_t err = Init(EEPROM_HOST, PIN_NUM_MISO, PIN_NUM_MOSI, PIN_NUM_CLK);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Erro ao inicializar SPI (%d)", err);
return err;
}
InitSpi(PIN_NUM_CS);
gainSetup(INTEGRATOR_OFF, FULLSCALESELECT_0_5V, GAIN_1, GAIN_1);
setupDivs(1, 1, 1);
setLcycMode(0x00);
resetStatus();
return ESP_OK;
}
esp_err_t meter_start(void) {
if (meter_task) return ESP_ERR_INVALID_STATE;
meter_clear_internal_data();
BaseType_t result = xTaskCreate(meter_task_func, "meter_task", 4096, NULL, 5, &meter_task);
return result == pdPASS ? ESP_OK : ESP_FAIL;
}
void meter_stop(void) {
if (meter_task) {
vTaskDelete(meter_task);
meter_task = NULL;
}
meter_clear_internal_data();
}
bool meter_is_running(void) {
return meter_task != NULL;
}
void meter_clear_data(void) {
meter_clear_internal_data();
}
// === Interface pública: acesso aos dados ===
float meter_get_vrms_l1(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.vrms[0] : 0; }
float meter_get_vrms_l2(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.vrms[1] : 0; }
float meter_get_vrms_l3(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.vrms[2] : 0; }
float meter_get_irms_l1(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.irms[0] : 0; }
float meter_get_irms_l2(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.irms[1] : 0; }
float meter_get_irms_l3(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.irms[2] : 0; }
int meter_get_watt_l1(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.watt[0] : 0; }
int meter_get_watt_l2(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.watt[1] : 0; }
int meter_get_watt_l3(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.watt[2] : 0; }
int meter_get_var_l1(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.var[0] : 0; }
int meter_get_var_l2(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.var[1] : 0; }
int meter_get_var_l3(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.var[2] : 0; }
int meter_get_va_l1(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.va[0] : 0; }
int meter_get_va_l2(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.va[1] : 0; }
int meter_get_va_l3(void) { meter_internal_data_t d; return meter_read_internal(&d) ? d.va[2] : 0; }
// === Diagnóstico ===
uint32_t meter_get_watchdog_counter(void) {
return meter_watchdog_counter;
}

View File

@@ -1,5 +1,5 @@
set(srcs set(srcs
"src/orno_modbus.c" "src/meter_orno.c" "src/modbus_params.c" "src/orno513.c" "src/orno516.c"
) )
idf_component_register(SRCS "${srcs}" idf_component_register(SRCS "${srcs}"

View File

@@ -0,0 +1,70 @@
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
/**
* @brief Inicializa o driver do medidor (SPI, mutex, registradores ADE7758).
*/
esp_err_t meter_init(void);
/**
* @brief Inicia a tarefa de leitura de dados do medidor.
*/
esp_err_t meter_start(void);
/**
* @brief Para a tarefa de leitura e limpa os dados internos.
*/
void meter_stop(void);
/**
* @brief Verifica se o medidor está em execução.
*
* @return true se a tarefa estiver ativa, false caso contrário.
*/
bool meter_is_running(void);
/**
* @brief Limpa os dados armazenados no medidor (zera todos os valores).
*/
void meter_clear_data(void);
// ----- Leituras por fase (L1, L2, L3) -----
// Tensão RMS (em volts)
float meter_get_vrms_l1(void);
float meter_get_vrms_l2(void);
float meter_get_vrms_l3(void);
// Corrente RMS (em amperes)
float meter_get_irms_l1(void);
float meter_get_irms_l2(void);
float meter_get_irms_l3(void);
// Potência ativa (W)
int meter_get_watt_l1(void);
int meter_get_watt_l2(void);
int meter_get_watt_l3(void);
// Potência reativa (VAR)
int meter_get_var_l1(void);
int meter_get_var_l2(void);
int meter_get_var_l3(void);
// Potência aparente (VA)
int meter_get_va_l1(void);
int meter_get_va_l2(void);
int meter_get_va_l3(void);
// (Opcional) contador de watchdog para diagnóstico
uint32_t meter_get_watchdog_counter(void);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,80 @@
/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*=====================================================================================
* Description:
* The Modbus parameter structures used to define Modbus instances that
* can be addressed by Modbus protocol. Define these structures per your needs in
* your application. Below is just an example of possible parameters.
*====================================================================================*/
#ifndef _DEVICE_PARAMS
#define _DEVICE_PARAMS
#include <stdint.h>
// This file defines structure of modbus parameters which reflect correspond modbus address space
// for each modbus register type (coils, discreet inputs, holding registers, input registers)
#pragma pack(push, 1)
typedef struct
{
uint8_t discrete_input0:1;
uint8_t discrete_input1:1;
uint8_t discrete_input2:1;
uint8_t discrete_input3:1;
uint8_t discrete_input4:1;
uint8_t discrete_input5:1;
uint8_t discrete_input6:1;
uint8_t discrete_input7:1;
uint8_t discrete_input_port1;
uint8_t discrete_input_port2;
} discrete_reg_params_t;
#pragma pack(pop)
#pragma pack(push, 1)
typedef struct
{
uint8_t coils_port0;
uint8_t coils_port1;
uint8_t coils_port2;
} coil_reg_params_t;
#pragma pack(pop)
#pragma pack(push, 1)
typedef struct
{
float input_data0; // 0
float input_data1; // 2
float input_data2; // 4
float input_data3; // 6
uint16_t data[150]; // 8 + 150 = 158
float input_data4; // 158
float input_data5;
float input_data6;
float input_data7;
uint16_t data_block1[150];
} input_reg_params_t;
#pragma pack(pop)
#pragma pack(push, 1)
typedef struct
{
uint32_t holding_data0;
uint32_t holding_data1;
uint32_t holding_data2;
uint32_t holding_data3;
uint32_t holding_data4;
uint32_t holding_data5;
uint32_t holding_data6;
uint32_t holding_data7;
} holding_reg_params_t;
#pragma pack(pop)
extern holding_reg_params_t holding_reg_params;
extern input_reg_params_t input_reg_params;
extern coil_reg_params_t coil_reg_params;
extern discrete_reg_params_t discrete_reg_params;
#endif // !defined(_DEVICE_PARAMS)

View File

@@ -1,62 +0,0 @@
#ifndef ORNO_MODBUS_H_
#define ORNO_MODBUS_H_
#include <stdbool.h>
#include "esp_err.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Tipo do medidor ORNO usado na aplicação.
*/
typedef enum {
ORNO_METER_GRID, ///< Medidor na entrada da rede elétrica
ORNO_METER_EVSE ///< Medidor na saída da EVSE
} orno_meter_type_t;
/**
* @brief Inicializa o driver ORNO Modbus.
*/
esp_err_t orno_modbus_init(void);
/**
* @brief Lê a corrente RMS do medidor especificado.
*
* @param type Tipo do medidor (GRID ou EVSE)
* @param current Ponteiro para armazenar o valor da corrente (em amperes)
* @return esp_err_t ESP_OK em caso de sucesso, erro caso contrário
*/
esp_err_t orno_modbus_read_current(orno_meter_type_t type, float *current);
/**
* @brief Ativa ou desativa o modo de teste (simulação).
*/
void orno_modbus_set_meter_test(bool state);
/**
* @brief Define o modelo usado do medidor (caso afete registros).
*/
void orno_modbus_set_model(bool enabled);
/**
* @brief Retorna o estado atual do medidor (ligado/desligado).
*/
bool orno_modbus_get_meter_state(void);
/**
* @brief Inicia a task interna de comunicação (se usada).
*/
void orno_modbus_start(void);
/**
* @brief Para a task de comunicação (se usada).
*/
void orno_modbus_stop(void);
#ifdef __cplusplus
}
#endif
#endif /* ORNO_MODBUS_H_ */

View File

@@ -1,4 +1,4 @@
#include "orno_modbus.h" #include "meter_orno.h"
#include <stdbool.h> #include <stdbool.h>
#include "esp_log.h" #include "esp_log.h"

View File

@@ -0,0 +1,20 @@
/*
* SPDX-FileCopyrightText: 2016-2021 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/*=====================================================================================
* Description:
* C file to define parameter storage instances
*====================================================================================*/
#include "modbus_params.h"
// Here are the user defined instances for device parameters packed by 1 byte
// These are keep the values that can be accessed from Modbus master
holding_reg_params_t holding_reg_params = { 0 };
input_reg_params_t input_reg_params = { 0 };
coil_reg_params_t coil_reg_params = { 0 };
discrete_reg_params_t discrete_reg_params = { 0 };

View File

@@ -0,0 +1,530 @@
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
#include "esp_log.h"
#include "modbus_params.h" // for modbus parameters structures
#include "mbcontroller.h"
#include "sdkconfig.h"
#include "meter_orno.h"
#define TXD_PIN (GPIO_NUM_17)
#define RXD_PIN (GPIO_NUM_16)
static const char *TAG = "serial_mdb";
static bool enabled = false;
static bool meterState = false;
static bool meterTest = false;
static TaskHandle_t serial_mdb_task = NULL;
#define MB_PORT_NUM 2 //(CONFIG_MB_UART_PORT_NUM) // Number of UART port used for Modbus connection
#define MB_DEV_SPEED 9600 //(CONFIG_MB_UART_BAUD_RATE) // The communication speed of the UART
// #define MB_PARITY_EVEN
#define MB_UART_TXD 17
#define MB_UART_RXD 16
#define MB_UART_RTS 5
// Note: Some pins on target chip cannot be assigned for UART communication.
// See UART documentation for selected board and target to configure pins using Kconfig.
// The number of parameters that intended to be used in the particular control process
#define MASTER_MAX_CIDS num_device_parameters
// Number of reading of parameters from slave
#define MASTER_MAX_RETRY 30
// Timeout to update cid over Modbus
#define UPDATE_CIDS_TIMEOUT_MS (3000)
#define UPDATE_CIDS_TIMEOUT_TICS (UPDATE_CIDS_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between polls
#define POLL_TIMEOUT_MS (500)
#define POLL_TIMEOUT_TICS (POLL_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between erros
#define ERROR_TIMEOUT_MS (1000)
#define ERROR_TIMEOUT_TICS (ERROR_TIMEOUT_MS / portTICK_PERIOD_MS)
// The macro to get offset for parameter in the appropriate structure
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) + 1))
#define COIL_OFFSET(field) ((uint16_t)(offsetof(coil_reg_params_t, field) + 1))
// Discrete offset macro
#define DISCR_OFFSET(field) ((uint16_t)(offsetof(discrete_reg_params_t, field) + 1))
#define STR(fieldname) ((const char *)(fieldname))
// Options can be used as bit masks or parameter limits
#define OPTS(min_val, max_val, step_val) \
{ \
.opt1 = min_val, .opt2 = max_val, .opt3 = step_val}
// Enumeration of modbus device addresses accessed by master device
enum
{
MB_DEVICE_ADDR1 = 1 // Only one slave device used for the test (add other slave addresses here)
};
// Enumeration of all supported CIDs for device (used in parameter definition table)
enum
{
CID_HOLD_DATA_0 = 0,
CID_HOLD_DATA_1 = 1,
CID_HOLD_DATA_2 = 2,
CID_HOLD_DATA_3 = 3,
CID_HOLD_DATA_4 = 4,
CID_HOLD_DATA_5 = 5,
CID_HOLD_DATA_6 = 6
};
#define SN 0x1000
#define METERID 0x1003
#define FW 0x1004
#define L1VOLTAGE 0x0100
// #define L2VOLTAGE 0x0010
// #define L3VOLTAGE 0x0012
#define L1CURRENT 0x0102
// #define L2CURRENT 0x0018
// #define L3CURRENT 0x001A
#define ACTIVEPOWER 0x0104
#define APPARENTPOWER 0x0106
#define REACTIVEPOWER 0x0108
#define TOTALFACTIVE 0x010E
#define TOTALRACTIVE 0x0118
// Example Data (Object) Dictionary for Modbus parameters:
// The CID field in the table must be unique.
// Modbus Slave Addr field defines slave address of the device with correspond parameter.
// Modbus Reg Type - Type of Modbus register area (Holding register, Input Register and such).
// Reg Start field defines the start Modbus register number and Reg Size defines the number of registers for the characteristic accordingly.
// The Instance Offset defines offset in the appropriate parameter structure that will be used as instance to save parameter value.
// Data Type, Data Size specify type of the characteristic and its data size.
// Parameter Options field specifies the options that can be used to process parameter value (limits or masks).
// Access Mode - can be used to implement custom options for processing of characteristic (Read/Write restrictions, factory mode values and etc).
const mb_parameter_descriptor_t device_parameters[] = {
// { CID, Param Name, Units, Modbus Slave Addr, Modbus Reg Type, Reg Start, Reg Size, Instance Offset, Data Type, Data Size, Parameter Options, Access Mode}
{CID_HOLD_DATA_0, STR("TOTALFACTIVE"), STR("kWh"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TOTALFACTIVE, 2,
HOLD_OFFSET(holding_data0), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_1, STR("TOTALRACTIVE"), STR("kWh"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, TOTALRACTIVE, 2,
HOLD_OFFSET(holding_data1), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_2, STR("ACTIVEPOWER"), STR("W"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, ACTIVEPOWER, 2,
HOLD_OFFSET(holding_data2), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_3, STR("APPARENTPOWER"), STR("W"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, APPARENTPOWER, 2,
HOLD_OFFSET(holding_data3), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_4, STR("REACTIVEPOWER"), STR("W"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, REACTIVEPOWER, 2,
HOLD_OFFSET(holding_data4), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_5, STR("L1CURRENT"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1CURRENT, 2,
HOLD_OFFSET(holding_data5), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_6, STR("L1VOLTAGE"), STR("V"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1VOLTAGE, 2,
HOLD_OFFSET(holding_data6), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ}
/*
{CID_HOLD_DATA_3, STR("L1VOLTAGE 4"), STR("V"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1VOLTAGE, 2,
HOLD_OFFSET(holding_data3), PARAM_TYPE_I32_DCBA, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_4, STR("L1VOLTAGE 5"), STR("V"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1VOLTAGE, 2,
HOLD_OFFSET(holding_data4), PARAM_TYPE_I32_CDAB, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_5, STR("L1CURRENT 2"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1CURRENT, 2,
HOLD_OFFSET(holding_data5), PARAM_TYPE_FLOAT, 4, OPTS(-100000, 100000, 1), PAR_PERMS_READ}
{CID_HOLD_DATA_2, STR("ID 2"), STR("ID 2"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, METERID, 2,
HOLD_OFFSET(holding_data4), PARAM_TYPE_U8, 1, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_3, STR("ID 3"), STR("FW 2"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, FW, 2,
HOLD_OFFSET(holding_data5), PARAM_TYPE_U8, 1, OPTS(0, 100000, 1), PAR_PERMS_READ}
{CID_HOLD_DATA_2, STR("ID 2"), STR("ID 2"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, METERID, 1,
HOLD_OFFSET(holding_data2), PARAM_TYPE_U16, 2, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_3, STR("ID 3"), STR("FW 2"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, FW, 1,
HOLD_OFFSET(holding_data3), PARAM_TYPE_U16, 2, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_4, STR("ID 4"), STR("ID 4"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1VOLTAGE, 2,
HOLD_OFFSET(holding_data4), PARAM_TYPE_U8, 1, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_5, STR("ID 5"), STR("ID 5"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1VOLTAGE, 2,
HOLD_OFFSET(holding_data5), PARAM_TYPE_U16, 2, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_6, STR("ID 6"), STR("ID 6"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1VOLTAGE, 2,
HOLD_OFFSET(holding_data6), PARAM_TYPE_U32, 4, OPTS(0, 100000, 1), PAR_PERMS_READ}
{CID_HOLD_DATA_4, STR("ID 4"), STR("ID 3"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, METERID, 2,
HOLD_OFFSET(holding_data4), PARAM_TYPE_U8, 1, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_5, STR("ID 5"), STR("FW 3"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, FW, 2,
HOLD_OFFSET(holding_data5), PARAM_TYPE_U8, 1, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_6, STR("ID 6"), STR("ID 4"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, METERID, 2,
HOLD_OFFSET(holding_data6), PARAM_TYPE_U8, 2, OPTS(0, 100000, 1), PAR_PERMS_READ}
{CID_HOLD_DATA_0, STR("L1"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1CURRENT, 2,
HOLD_OFFSET(holding_data0), PARAM_TYPE_FLOAT, 4, OPTS(-1000, 1000, 0.1), PAR_PERMS_READ},
{CID_HOLD_DATA_1, STR("L2"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L2CURRENT, 2,
HOLD_OFFSET(holding_data1), PARAM_TYPE_FLOAT, 4, OPTS(-1000, 1000, 0.1), PAR_PERMS_READ},
{CID_HOLD_DATA_2, STR("L3"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L3CURRENT, 2,
HOLD_OFFSET(holding_data2), PARAM_TYPE_FLOAT, 4, OPTS(-1000, 1000, 0.1), PAR_PERMS_READ}
*/
};
// Calculate number of parameters in the table
const uint16_t num_device_parameters = (sizeof(device_parameters) / sizeof(device_parameters[0]));
// The function to get pointer to parameter storage (instance) according to parameter description table
static void *master_get_param_data(const mb_parameter_descriptor_t *param_descriptor)
{
assert(param_descriptor != NULL);
void *instance_ptr = NULL;
if (param_descriptor->param_offset != 0)
{
switch (param_descriptor->mb_param_type)
{
case MB_PARAM_HOLDING:
instance_ptr = ((void *)&holding_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_INPUT:
instance_ptr = ((void *)&input_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_COIL:
instance_ptr = ((void *)&coil_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_DISCRETE:
instance_ptr = ((void *)&discrete_reg_params + param_descriptor->param_offset - 1);
break;
default:
instance_ptr = NULL;
break;
}
}
else
{
ESP_LOGE(TAG, "Wrong parameter offset for CID #%u", (unsigned)param_descriptor->cid);
assert(instance_ptr != NULL);
}
return instance_ptr;
}
// Float - Mid-Little Endian (CDAB)
float ReverseFloat(const float inFloat)
{
float retVal;
char *floatToConvert = (char *)&inFloat;
char *returnFloat = (char *)&retVal;
// swap the bytes into a temporary buffer
returnFloat[0] = floatToConvert[2];
returnFloat[1] = floatToConvert[3];
returnFloat[2] = floatToConvert[0];
returnFloat[3] = floatToConvert[1];
return retVal;
}
// Int - Mid-Little Endian (CDAB)
int ReverseInt(const int inFloat)
{
int retVal;
char *floatToConvert = (char *)&inFloat;
char *returnFloat = (char *)&retVal;
// swap the bytes into a temporary buffer
returnFloat[0] = floatToConvert[2];
returnFloat[1] = floatToConvert[3];
returnFloat[2] = floatToConvert[0];
returnFloat[3] = floatToConvert[1];
return retVal;
}
static void serial_mdb_task_func(void *param)
{
ESP_LOGI(TAG, "serial_mdb_task_func");
esp_err_t err = ESP_OK;
float maxcurrent = 0;
float l1current = 0;
float l2current = 0;
float l3current = 0;
int error_count = 0;
bool alarm_state = false;
const mb_parameter_descriptor_t *param_descriptor = NULL;
ESP_LOGI(TAG, "Start modbus...");
while (true)
{
// if ((evse_state_is_charging(evse_get_state()) && enabled) || (meterTest && enabled))
{
// Read all found characteristics from slave(s)
for (uint16_t cid = 0; (err != ESP_ERR_NOT_FOUND) && cid < MASTER_MAX_CIDS; cid++)
{
// Get data from parameters description table
// and use this information to fill the characteristics description table
// and having all required fields in just one table
err = mbc_master_get_cid_info(cid, &param_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL))
{
void *temp_data_ptr = master_get_param_data(param_descriptor);
uint8_t type = 0;
err = mbc_master_get_parameter(cid, (char *)param_descriptor->param_key,
(uint8_t *)temp_data_ptr, &type);
if (err == ESP_OK)
{
ESP_LOGI(TAG, "err == ESP_OK...");
error_count = 0;
meterState = true;
if ((param_descriptor->mb_param_type == MB_PARAM_HOLDING) ||
(param_descriptor->mb_param_type == MB_PARAM_INPUT))
{
int value = *(int *)temp_data_ptr;
// value = ReverseInt(value);
/*
switch (cid)
{
case 0:
// setMaxGridCurrent(grid_get_max_current() * 10);
maxcurrent = 0;
l1current = 0;
l2current = 0;
l3current = 0;
l1current = value;
break;
case 1:
l2current = value;
break;
case 2:
l3current = value;
maxcurrent = (l1current > l2current) ? l1current : l2current;
maxcurrent = (maxcurrent > l3current) ? maxcurrent : l3current;
// maxcurrent = (maxcurrent * 5) + 25;
// setLiveGridCurrent((int)maxcurrent * 10);
break;
default:
// code block
}*/
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %d (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
value,
*(uint32_t *)temp_data_ptr);
if (((value > param_descriptor->param_opts.max) ||
(value < param_descriptor->param_opts.min)))
{
alarm_state = true;
break;
}
}
else
{
uint8_t state = *(uint8_t *)temp_data_ptr;
const char *rw_str = (state & param_descriptor->param_opts.opt1) ? "ON" : "OFF";
if ((state & param_descriptor->param_opts.opt2) == param_descriptor->param_opts.opt2)
{
ESP_LOGI(TAG, "Characteristic 6 #%u %s (%s) value = %s (0x%" PRIx8 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char *)rw_str,
*(uint8_t *)temp_data_ptr);
}
else
{
ESP_LOGE(TAG, "Characteristic 7 #%u %s (%s) value = %s (0x%" PRIx8 "), unexpected value.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char *)rw_str,
*(uint8_t *)temp_data_ptr);
alarm_state = true;
break;
}
if (state & param_descriptor->param_opts.opt1)
{
alarm_state = true;
break;
}
}
}
else
{
if (error_count > 3 && !meterTest)
{
meterState = false;
vTaskDelay(ERROR_TIMEOUT_MS * error_count); // timeout between polls
}
else
{
error_count++;
}
ESP_LOGE(TAG, "Characteristic 8 #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char *)esp_err_to_name(err));
}
vTaskDelay(POLL_TIMEOUT_TICS); // timeout between polls
}
}
}
vTaskDelay(UPDATE_CIDS_TIMEOUT_TICS);
}
if (alarm_state)
{
ESP_LOGI(TAG, "Alarm triggered by cid #%u.", param_descriptor->cid);
}
else
{
ESP_LOGE(TAG, "Alarm is not triggered after %u retries.", MASTER_MAX_RETRY);
}
ESP_LOGI(TAG, "Destroy master...");
ESP_ERROR_CHECK(mbc_master_destroy());
/*
while (true)
{
vTaskDelay(pdMS_TO_TICKS(1000));
}
*/
}
// Modbus master initialization
static esp_err_t master_init(void)
{
// Initialize and start Modbus controller
mb_communication_info_t comm = {
//.slave_addr = 1,
.port = MB_PORT_NUM,
.mode = MB_MODE_RTU,
.baudrate = MB_DEV_SPEED,
.parity = UART_PARITY_DISABLE};
void *master_handler = NULL;
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &master_handler);
MB_RETURN_ON_FALSE((master_handler != NULL), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail.");
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail, returns(0x%x).", (int)err);
err = mbc_master_setup((void *)&comm);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller setup fail, returns(0x%x).", (int)err);
// Set UART pin numbers
err = uart_set_pin(MB_PORT_NUM, MB_UART_TXD, MB_UART_RXD,
MB_UART_RTS, UART_PIN_NO_CHANGE);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set pin failure, uart_set_pin() returned (0x%x).", (int)err);
err = mbc_master_start();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller start fail, returned (0x%x).", (int)err);
// Set driver mode to Half Duplex
err = uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set mode failure, uart_set_mode() returned (0x%x).", (int)err);
vTaskDelay(5);
err = mbc_master_set_descriptor(&device_parameters[0], num_device_parameters);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller set descriptor fail, returns(0x%x).", (int)err);
ESP_LOGI(TAG, "Modbus master stack initialized...");
return err;
}
/**
* @brief Set meter model
*
*/
void serial_mdb_set_model(bool _enabled)
{
enabled = _enabled;
}
/**
* @brief Set meter state
*
*/
bool serial_mdb_get_meter_state()
{
return meterState;
}
/**
* @brief Set meter state
*
*/
void serial_mdb_set_meter_test(bool _meterTest)
{
meterTest = _meterTest;
}
void serial_mdb_start()
{
ESP_LOGI(TAG, "Starting MDB Serial");
enabled = meter_get_model() != ENERGY_METER_NONE;
ESP_ERROR_CHECK(master_init());
xTaskCreate(serial_mdb_task_func, "serial_mdb_task", 4 * 1024, NULL, 5, &serial_mdb_task);
}
void serial_mdb_stop(void)
{
ESP_LOGI(TAG, "Stopping");
if (serial_mdb_task)
{
vTaskDelete(serial_mdb_task);
serial_mdb_task = NULL;
}
// if (port != -1)
//{
uart_driver_delete(MB_PORT_NUM);
// port = -1;
//}
}

View File

@@ -0,0 +1,438 @@
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
#include "esp_log.h"
#include "meter_orno.h"
#include "modbus_params.h" // for modbus parameters structures
#include "mbcontroller.h"
#include "sdkconfig.h"
#define TXD_PIN (GPIO_NUM_17)
#define RXD_PIN (GPIO_NUM_16)
static const char *TAG = "serial_mdb";
static bool enabled = false;
static bool meterState = false;
static bool meterTest = false;
static TaskHandle_t serial_mdb_task = NULL;
#define MB_PORT_NUM 2 //(CONFIG_MB_UART_PORT_NUM) // Number of UART port used for Modbus connection
#define MB_DEV_SPEED 9600 //(CONFIG_MB_UART_BAUD_RATE) // The communication speed of the UART
// #define MB_PARITY_EVEN
#define MB_UART_TXD 17
#define MB_UART_RXD 16
#define MB_UART_RTS 5
// Note: Some pins on target chip cannot be assigned for UART communication.
// See UART documentation for selected board and target to configure pins using Kconfig.
// The number of parameters that intended to be used in the particular control process
#define MASTER_MAX_CIDS num_device_parameters
// Number of reading of parameters from slave
#define MASTER_MAX_RETRY 30
// Timeout to update cid over Modbus
#define UPDATE_CIDS_TIMEOUT_MS (5000)
#define UPDATE_CIDS_TIMEOUT_TICS (UPDATE_CIDS_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between polls
#define POLL_TIMEOUT_MS (1)
#define POLL_TIMEOUT_TICS (POLL_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between erros
#define ERROR_TIMEOUT_MS (30000)
#define ERROR_TIMEOUT_TICS (ERROR_TIMEOUT_MS / portTICK_PERIOD_MS)
// The macro to get offset for parameter in the appropriate structure
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) + 1))
#define COIL_OFFSET(field) ((uint16_t)(offsetof(coil_reg_params_t, field) + 1))
// Discrete offset macro
#define DISCR_OFFSET(field) ((uint16_t)(offsetof(discrete_reg_params_t, field) + 1))
#define STR(fieldname) ((const char *)(fieldname))
// Options can be used as bit masks or parameter limits
#define OPTS(min_val, max_val, step_val) \
{ \
.opt1 = min_val, .opt2 = max_val, .opt3 = step_val}
// Enumeration of modbus device addresses accessed by master device
enum
{
MB_DEVICE_ADDR1 = 1 // Only one slave device used for the test (add other slave addresses here)
};
// Enumeration of all supported CIDs for device (used in parameter definition table)
enum
{
CID_HOLD_DATA_0 = 0,
CID_HOLD_DATA_1 = 1,
CID_HOLD_DATA_2 = 2,
CID_HOLD_DATA_3 = 3,
CID_HOLD_DATA_4 = 4,
CID_HOLD_DATA_5 = 5,
CID_HOLD_DATA_6 = 6
};
#define SN 0x01
#define METERID 0x02
#define L1VOLTAGE 0x000E
#define L2VOLTAGE 0x0010
#define L3VOLTAGE 0x0012
#define L1CURRENT 0x0016
#define L2CURRENT 0x0018
#define L3CURRENT 0x001A
#define TOTALACTIVEPOWER 0x001C
// Example Data (Object) Dictionary for Modbus parameters:
// The CID field in the table must be unique.
// Modbus Slave Addr field defines slave address of the device with correspond parameter.
// Modbus Reg Type - Type of Modbus register area (Holding register, Input Register and such).
// Reg Start field defines the start Modbus register number and Reg Size defines the number of registers for the characteristic accordingly.
// The Instance Offset defines offset in the appropriate parameter structure that will be used as instance to save parameter value.
// Data Type, Data Size specify type of the characteristic and its data size.
// Parameter Options field specifies the options that can be used to process parameter value (limits or masks).
// Access Mode - can be used to implement custom options for processing of characteristic (Read/Write restrictions, factory mode values and etc).
const mb_parameter_descriptor_t device_parameters[] = {
// { CID, Param Name, Units, Modbus Slave Addr, Modbus Reg Type, Reg Start, Reg Size, Instance Offset, Data Type, Data Size, Parameter Options, Access Mode}
//{CID_HOLD_DATA_0, STR("ID 1"), STR("ID"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, METERID, 2,
// HOLD_OFFSET(holding_data0), PARAM_TYPE_U8, 1, OPTS(0, 100000, 1), PAR_PERMS_READ},
{CID_HOLD_DATA_0, STR("L1"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L1CURRENT, 2,
HOLD_OFFSET(holding_data0), PARAM_TYPE_FLOAT, 4, OPTS(-1000, 1000, 0.1), PAR_PERMS_READ},
{CID_HOLD_DATA_1, STR("L2"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L2CURRENT, 2,
HOLD_OFFSET(holding_data1), PARAM_TYPE_FLOAT, 4, OPTS(-1000, 1000, 0.1), PAR_PERMS_READ},
{CID_HOLD_DATA_2, STR("L3"), STR("A"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, L3CURRENT, 2,
HOLD_OFFSET(holding_data2), PARAM_TYPE_FLOAT, 4, OPTS(-1000, 1000, 0.1), PAR_PERMS_READ}
};
// Calculate number of parameters in the table
const uint16_t num_device_parameters = (sizeof(device_parameters) / sizeof(device_parameters[0]));
// The function to get pointer to parameter storage (instance) according to parameter description table
static void *master_get_param_data(const mb_parameter_descriptor_t *param_descriptor)
{
assert(param_descriptor != NULL);
void *instance_ptr = NULL;
if (param_descriptor->param_offset != 0)
{
switch (param_descriptor->mb_param_type)
{
case MB_PARAM_HOLDING:
instance_ptr = ((void *)&holding_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_INPUT:
instance_ptr = ((void *)&input_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_COIL:
instance_ptr = ((void *)&coil_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_DISCRETE:
instance_ptr = ((void *)&discrete_reg_params + param_descriptor->param_offset - 1);
break;
default:
instance_ptr = NULL;
break;
}
}
else
{
ESP_LOGE(TAG, "Wrong parameter offset for CID #%u", (unsigned)param_descriptor->cid);
assert(instance_ptr != NULL);
}
return instance_ptr;
}
// Float - Mid-Little Endian (CDAB)
float ReverseFloat(const float inFloat)
{
float retVal;
char *floatToConvert = (char *)&inFloat;
char *returnFloat = (char *)&retVal;
// swap the bytes into a temporary buffer
returnFloat[0] = floatToConvert[2];
returnFloat[1] = floatToConvert[3];
returnFloat[2] = floatToConvert[0];
returnFloat[3] = floatToConvert[1];
return retVal;
}
static void serial_mdb_task_func(void *param)
{
ESP_LOGI(TAG, "serial_mdb_task_func");
esp_err_t err = ESP_OK;
float maxcurrent = 0;
float l1current = 0;
float l2current = 0;
float l3current = 0;
int error_count = 0;
bool alarm_state = false;
const mb_parameter_descriptor_t *param_descriptor = NULL;
ESP_LOGI(TAG, "Start modbus...");
while (true)
{
if ((evse_state_is_charging(evse_get_state()) && enabled) || (meterTest && enabled))
{
// Read all found characteristics from slave(s)
for (uint16_t cid = 0; (err != ESP_ERR_NOT_FOUND) && cid < MASTER_MAX_CIDS; cid++)
{
// Get data from parameters description table
// and use this information to fill the characteristics description table
// and having all required fields in just one table
err = mbc_master_get_cid_info(cid, &param_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL))
{
void *temp_data_ptr = master_get_param_data(param_descriptor);
uint8_t type = 0;
err = mbc_master_get_parameter(cid, (char *)param_descriptor->param_key,
(uint8_t *)temp_data_ptr, &type);
if (err == ESP_OK)
{
error_count = 0;
meterState = true;
if ((param_descriptor->mb_param_type == MB_PARAM_HOLDING) ||
(param_descriptor->mb_param_type == MB_PARAM_INPUT))
{
float value = *(float *)temp_data_ptr;
value = ReverseFloat(value);
switch (cid)
{
case 0:
setMaxGridCurrent(grid_get_max_current() * 10);
maxcurrent = 0;
l1current = 0;
l2current = 0;
l3current = 0;
l1current = value;
break;
case 1:
l2current = value;
break;
case 2:
l3current = value;
maxcurrent = (l1current > l2current) ? l1current : l2current;
maxcurrent = (maxcurrent > l3current) ? maxcurrent : l3current;
//maxcurrent = (maxcurrent * 5) + 25;
setLiveGridCurrent((int)maxcurrent * 10);
break;
default:
// code block
}
ESP_LOGD(TAG, "Characteristic #%u %s (%s) value = %f (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
value,
*(uint32_t *)temp_data_ptr);
if (((value > param_descriptor->param_opts.max) ||
(value < param_descriptor->param_opts.min)))
{
alarm_state = true;
break;
}
}
else
{
uint8_t state = *(uint8_t *)temp_data_ptr;
const char *rw_str = (state & param_descriptor->param_opts.opt1) ? "ON" : "OFF";
if ((state & param_descriptor->param_opts.opt2) == param_descriptor->param_opts.opt2)
{
ESP_LOGI(TAG, "Characteristic 6 #%u %s (%s) value = %s (0x%" PRIx8 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char *)rw_str,
*(uint8_t *)temp_data_ptr);
}
else
{
ESP_LOGE(TAG, "Characteristic 7 #%u %s (%s) value = %s (0x%" PRIx8 "), unexpected value.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char *)rw_str,
*(uint8_t *)temp_data_ptr);
alarm_state = true;
break;
}
if (state & param_descriptor->param_opts.opt1)
{
alarm_state = true;
break;
}
}
}
else
{
if (error_count > 3 && !meterTest)
{
meterState = false;
vTaskDelay(ERROR_TIMEOUT_MS * error_count); // timeout between polls
}
else
{
error_count++;
}
ESP_LOGE(TAG, "Characteristic 8 #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char *)esp_err_to_name(err));
}
vTaskDelay(POLL_TIMEOUT_TICS); // timeout between polls
}
}
}
vTaskDelay(UPDATE_CIDS_TIMEOUT_TICS);
}
if (alarm_state)
{
ESP_LOGI(TAG, "Alarm triggered by cid #%u.", param_descriptor->cid);
}
else
{
ESP_LOGE(TAG, "Alarm is not triggered after %u retries.", MASTER_MAX_RETRY);
}
ESP_LOGI(TAG, "Destroy master...");
ESP_ERROR_CHECK(mbc_master_destroy());
/*
while (true)
{
vTaskDelay(pdMS_TO_TICKS(1000));
}
*/
}
// Modbus master initialization
static esp_err_t master_init(void)
{
// Initialize and start Modbus controller
mb_communication_info_t comm = {
//.slave_addr = 1,
.port = MB_PORT_NUM,
.mode = MB_MODE_RTU,
.baudrate = MB_DEV_SPEED,
.parity = UART_PARITY_EVEN};
void *master_handler = NULL;
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &master_handler);
MB_RETURN_ON_FALSE((master_handler != NULL), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail.");
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail, returns(0x%x).", (int)err);
err = mbc_master_setup((void *)&comm);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller setup fail, returns(0x%x).", (int)err);
// Set UART pin numbers
err = uart_set_pin(MB_PORT_NUM, MB_UART_TXD, MB_UART_RXD,
MB_UART_RTS, UART_PIN_NO_CHANGE);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set pin failure, uart_set_pin() returned (0x%x).", (int)err);
err = mbc_master_start();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller start fail, returned (0x%x).", (int)err);
// Set driver mode to Half Duplex
err = uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set mode failure, uart_set_mode() returned (0x%x).", (int)err);
vTaskDelay(5);
err = mbc_master_set_descriptor(&device_parameters[0], num_device_parameters);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller set descriptor fail, returns(0x%x).", (int)err);
ESP_LOGI(TAG, "Modbus master stack initialized...");
return err;
}
/**
* @brief Set meter model
*
*/
void serial_mdb_set_model(bool _enabled)
{
enabled = _enabled;
}
/**
* @brief Set meter state
*
*/
bool serial_mdb_get_meter_state()
{
return meterState;
}
/**
* @brief Set meter state
*
*/
void serial_mdb_set_meter_test(bool _meterTest)
{
meterTest = _meterTest;
}
void serial_mdb_start()
{
ESP_LOGI(TAG, "Starting MDB Serial");
enabled = meter_get_model() != ENERGY_METER_NONE;
ESP_ERROR_CHECK(master_init());
xTaskCreate(serial_mdb_task_func, "serial_mdb_task", 4 * 1024, NULL, 5, &serial_mdb_task);
}
void serial_mdb_stop(void)
{
ESP_LOGI(TAG, "Stopping");
if (serial_mdb_task)
{
vTaskDelete(serial_mdb_task);
serial_mdb_task = NULL;
}
// if (port != -1)
//{
uart_driver_delete(MB_PORT_NUM);
// port = -1;
//}
}

View File

@@ -1,26 +1,88 @@
#ifndef METER_ZIGBEE_H_ #pragma once
#define METER_ZIGBEE_H_
#include "driver/uart.h" #ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "esp_err.h"
/** /**
* @brief Send Data * @brief Inicializa o driver do medidor Zigbee (UART, mutex, etc.)
*
*/ */
int meter_zigbee_send_data(const char *data); esp_err_t meter_init(void);
/** /**
* @brief Start serial MT * @brief Inicia a tarefa de leitura dos dados do medidor Zigbee.
*
*/ */
void meter_zigbee_start(); esp_err_t meter_start(void);
/** /**
* @brief Stop serial MT * @brief Interrompe a tarefa e limpa recursos (UART, mutex).
*
*/ */
void meter_zigbee_stop(void); void meter_stop(void);
#endif /* METER_ZIGBEE_H_ */ /**
* @brief Verifica se o medidor Zigbee está em execução.
*
* @return true se a tarefa está ativa, false se não.
*/
bool meter_is_running(void);
/**
* @brief Limpa todos os dados armazenados em memória.
*/
void meter_clear_data(void);
// ----------------------
// Leituras por fase (L1, L2, L3)
// ----------------------
// Corrente RMS (em amperes)
float meter_get_irms_l1(void);
float meter_get_irms_l2(void);
float meter_get_irms_l3(void);
// Tensão RMS (em volts)
float meter_get_vrms_l1(void);
float meter_get_vrms_l2(void);
float meter_get_vrms_l3(void);
// Potência ativa (W)
int meter_get_watt_l1(void);
int meter_get_watt_l2(void);
int meter_get_watt_l3(void);
// Potência reativa (VAR)
int meter_get_var_l1(void);
int meter_get_var_l2(void);
int meter_get_var_l3(void);
// Potência aparente (VA)
int meter_get_va_l1(void);
int meter_get_va_l2(void);
int meter_get_va_l3(void);
// ----------------------
// Dados adicionais
// ----------------------
/**
* @brief Retorna a frequência da rede em Hz.
*/
float meter_get_frequency(void);
/**
* @brief Retorna o fator de potência médio.
*/
float meter_get_power_factor(void);
/**
* @brief Retorna a energia total acumulada (kWh ou Wh, dependendo do dispositivo).
*/
float meter_get_total_energy(void);
#ifdef __cplusplus
}
#endif

View File

@@ -1,33 +1,102 @@
#include "meter_zigbee.h"
#include <string.h>
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/task.h" #include "freertos/task.h"
#include "esp_system.h" #include "freertos/semphr.h"
#include "esp_log.h" #include "esp_log.h"
#include "esp_system.h"
#include "driver/uart.h" #include "driver/uart.h"
#include "string.h"
#include "driver/gpio.h" #include "driver/gpio.h"
#include "meter_zigbee.h"
#include <math.h>
#define TAG "meter_zigbee" #define TAG "meter_zigbee"
#define TXD_PIN (GPIO_NUM_17) // UART config
#define RXD_PIN (GPIO_NUM_16) #define UART_PORT UART_NUM_1
#define BUF_SIZE 128 #define TXD_PIN GPIO_NUM_17
#define RX_BUF_SIZE 14 #define RXD_PIN GPIO_NUM_16
#define UART_BUF_SIZE 128
#define RX_FRAME_SIZE 14
#define VOLTAGE_CURRENT1_ATTR 0x0006 // Zigbee Attribute IDs
#define VOLTAGE_CURRENT2_ATTR 0x0007 #define ATTR_CURRENT_L1 0x0006
#define VOLTAGE_CURRENT3_ATTR 0x0008 #define ATTR_CURRENT_L2 0x0007
#define ATTR_CURRENT_L3 0x0008
static TaskHandle_t meter_zigbee_task = NULL; #define ATTR_VOLTAGE_L1 0x0266
static float l1_current = 0, l2_current = 0, l3_current = 0; #define ATTR_CURRENT_L1_ALT 0x0267
#define ATTR_POWER_L1 0x0268
static float decode_current(const uint8_t *buf) { #define ATTR_VOLTAGE_L2 0x0269
#define ATTR_CURRENT_L2_ALT 0x026A
#define ATTR_POWER_L2 0x026B
#define ATTR_VOLTAGE_L3 0x026C
#define ATTR_CURRENT_L3_ALT 0x026D
#define ATTR_POWER_L3 0x026E
#define ATTR_FREQUENCY 0x0265
#define ATTR_POWER_FACTOR 0x020F
#define ATTR_TOTAL_ENERGY 0x0201
#define PHASE_COUNT 3
#define PHASE_L1 0
#define PHASE_L2 1
#define PHASE_L3 2
// Internal meter state
typedef struct {
float vrms[PHASE_COUNT];
float irms[PHASE_COUNT];
int watt[PHASE_COUNT];
int var[PHASE_COUNT];
int va[PHASE_COUNT];
float frequency;
float power_factor;
float total_energy;
} meter_zigbee_data_t;
static meter_zigbee_data_t meter_data = {0};
static SemaphoreHandle_t meter_mutex = NULL;
static TaskHandle_t meter_task = NULL;
// ---------- Utils ----------
static inline float decode_float(const uint8_t *buf) {
return (buf[9] + (buf[8] << 8) + (buf[7] << 16)) / 100.0f; return (buf[9] + (buf[8] << 8) + (buf[7] << 16)) / 100.0f;
} }
static void decode_frame(const uint8_t *buf) { static float meter_data_get_float(const float *arr, uint8_t phase) {
uint16_t attr_code = buf[1] | (buf[2] << 8); float val = 0.0f;
if (phase >= PHASE_COUNT) return 0;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
val = arr[phase];
xSemaphoreGive(meter_mutex);
}
return val;
}
static int meter_data_get_int(const int *arr, uint8_t phase) {
int val = 0;
if (phase >= PHASE_COUNT) return 0;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
val = arr[phase];
xSemaphoreGive(meter_mutex);
}
return val;
}
static void meter_data_clear(void) {
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
memset(&meter_data, 0, sizeof(meter_data));
xSemaphoreGive(meter_mutex);
}
}
// ---------- Frame Handler ----------
static void handle_zigbee_frame(const uint8_t *buf) {
uint16_t attr = buf[1] | (buf[2] << 8);
uint8_t size = buf[4]; uint8_t size = buf[4];
if (size != 8) { if (size != 8) {
@@ -35,35 +104,62 @@ static void decode_frame(const uint8_t *buf) {
return; return;
} }
float current = decode_current(buf); float value = decode_float(buf);
ESP_LOGI(TAG, "Attr 0x%04X - Current: %.2f A", attr_code, current); ESP_LOGI(TAG, "Attr 0x%04X = %.2f", attr, value);
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
switch (attr) {
case ATTR_CURRENT_L1:
case ATTR_CURRENT_L1_ALT:
meter_data.irms[0] = value;
break;
case ATTR_CURRENT_L2:
case ATTR_CURRENT_L2_ALT:
meter_data.irms[1] = value;
break;
case ATTR_CURRENT_L3:
case ATTR_CURRENT_L3_ALT:
meter_data.irms[2] = value;
break;
case ATTR_VOLTAGE_L1: meter_data.vrms[0] = value; break;
case ATTR_VOLTAGE_L2: meter_data.vrms[1] = value; break;
case ATTR_VOLTAGE_L3: meter_data.vrms[2] = value; break;
case ATTR_POWER_L1: meter_data.watt[0] = (int)value; break;
case ATTR_POWER_L2: meter_data.watt[1] = (int)value; break;
case ATTR_POWER_L3: meter_data.watt[2] = (int)value; break;
case ATTR_POWER_FACTOR: meter_data.power_factor = value; break;
case ATTR_FREQUENCY: meter_data.frequency = value; break;
case ATTR_TOTAL_ENERGY: meter_data.total_energy = value; break;
switch (attr_code) {
case VOLTAGE_CURRENT1_ATTR: l1_current = current; break;
case VOLTAGE_CURRENT2_ATTR: l2_current = current; break;
case VOLTAGE_CURRENT3_ATTR: l3_current = current; break;
default: default:
ESP_LOGW(TAG, "Unknown attribute code: 0x%04X", attr_code); ESP_LOGW(TAG, "Unknown attr: 0x%04X", attr);
return; break;
}
xSemaphoreGive(meter_mutex);
} }
float max_current = fmaxf(fmaxf(l1_current, l2_current), l3_current);
ESP_LOGI(TAG, "Max current: %.2f A", max_current);
} }
static void meter_zigbee_task_func(void *param) { // ---------- Task ----------
ESP_LOGI(TAG, "Zigbee meter task started");
uint8_t *buf = malloc(RX_BUF_SIZE); static void meter_task_func(void *param) {
uint8_t *buf = malloc(RX_FRAME_SIZE);
if (!buf) { if (!buf) {
ESP_LOGE(TAG, "Memory allocation failed"); ESP_LOGE(TAG, "Memory allocation failed");
vTaskDelete(NULL); vTaskDelete(NULL);
return; return;
} }
ESP_LOGI(TAG, "Zigbee meter task started");
while (1) { while (1) {
int len = uart_read_bytes(UART_NUM_1, buf, RX_BUF_SIZE, pdMS_TO_TICKS(1000)); int len = uart_read_bytes(UART_PORT, buf, RX_FRAME_SIZE, pdMS_TO_TICKS(1000));
if (len >= 10) { if (len >= 10) {
decode_frame(buf); handle_zigbee_frame(buf);
} }
} }
@@ -71,17 +167,19 @@ static void meter_zigbee_task_func(void *param) {
vTaskDelete(NULL); vTaskDelete(NULL);
} }
int meter_zigbee_send_data(const char *data) { // ---------- Public API (meter.h) ----------
int len = strlen(data);
int sent = uart_write_bytes(UART_NUM_1, data, len);
ESP_LOGI(TAG, "Sent %d bytes", sent);
return sent;
}
void meter_zigbee_start(void) { esp_err_t meter_init(void) {
ESP_LOGI(TAG, "Starting Zigbee UART"); ESP_LOGI(TAG, "Initializing Zigbee meter");
uart_config_t uart_config = { if (!meter_mutex) {
meter_mutex = xSemaphoreCreateMutex();
if (!meter_mutex) return ESP_ERR_NO_MEM;
}
meter_data_clear();
uart_config_t config = {
.baud_rate = 115200, .baud_rate = 115200,
.data_bits = UART_DATA_8_BITS, .data_bits = UART_DATA_8_BITS,
.parity = UART_PARITY_DISABLE, .parity = UART_PARITY_DISABLE,
@@ -90,20 +188,91 @@ void meter_zigbee_start(void) {
.source_clk = UART_SCLK_DEFAULT .source_clk = UART_SCLK_DEFAULT
}; };
ESP_ERROR_CHECK(uart_param_config(UART_NUM_1, &uart_config)); ESP_ERROR_CHECK(uart_param_config(UART_PORT, &config));
ESP_ERROR_CHECK(uart_set_pin(UART_NUM_1, TXD_PIN, RXD_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE)); ESP_ERROR_CHECK(uart_set_pin(UART_PORT, TXD_PIN, RXD_PIN, UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(uart_driver_install(UART_NUM_1, BUF_SIZE * 2, 0, 0, NULL,0)); ESP_ERROR_CHECK(uart_driver_install(UART_PORT, UART_BUF_SIZE * 2, 0, 0, NULL, 0));
xTaskCreate(meter_zigbee_task_func, "meter_zigbee_task", 4096, NULL, 5, &meter_zigbee_task); return ESP_OK;
} }
void meter_zigbee_stop(void) { esp_err_t meter_start(void) {
ESP_LOGI(TAG, "Stopping Zigbee UART"); if (meter_task) return ESP_ERR_INVALID_STATE;
if (meter_zigbee_task) { xTaskCreate(meter_task_func, "meter_zigbee_task", 4096, NULL, 5, &meter_task);
vTaskDelete(meter_zigbee_task); return ESP_OK;
meter_zigbee_task = NULL; }
void meter_stop(void) {
if (meter_task) {
vTaskDelete(meter_task);
meter_task = NULL;
} }
uart_driver_delete(UART_NUM_1); uart_driver_delete(UART_PORT);
if (meter_mutex) {
vSemaphoreDelete(meter_mutex);
meter_mutex = NULL;
}
}
bool meter_is_running(void) {
return meter_task != NULL;
}
void meter_clear_data(void) {
meter_data_clear();
}
// ---------- RMS Current ----------
float meter_get_irms_l1(void) { return meter_data_get_float(meter_data.irms, PHASE_L1); }
float meter_get_irms_l2(void) { return meter_data_get_float(meter_data.irms, PHASE_L2); }
float meter_get_irms_l3(void) { return meter_data_get_float(meter_data.irms, PHASE_L3); }
// ---------- RMS Voltage ----------
float meter_get_vrms_l1(void) { return meter_data_get_float(meter_data.vrms, PHASE_L1); }
float meter_get_vrms_l2(void) { return meter_data_get_float(meter_data.vrms, PHASE_L2); }
float meter_get_vrms_l3(void) { return meter_data_get_float(meter_data.vrms, PHASE_L3); }
// ---------- Active Power ----------
int meter_get_watt_l1(void) { return meter_data_get_int(meter_data.watt, PHASE_L1); }
int meter_get_watt_l2(void) { return meter_data_get_int(meter_data.watt, PHASE_L2); }
int meter_get_watt_l3(void) { return meter_data_get_int(meter_data.watt, PHASE_L3); }
// ---------- Reactive Power ----------
int meter_get_var_l1(void) { return meter_data_get_int(meter_data.var, PHASE_L1); }
int meter_get_var_l2(void) { return meter_data_get_int(meter_data.var, PHASE_L2); }
int meter_get_var_l3(void) { return meter_data_get_int(meter_data.var, PHASE_L3); }
// ---------- Apparent Power ----------
int meter_get_va_l1(void) { return meter_data_get_int(meter_data.va, PHASE_L1); }
int meter_get_va_l2(void) { return meter_data_get_int(meter_data.va, PHASE_L2); }
int meter_get_va_l3(void) { return meter_data_get_int(meter_data.va, PHASE_L3); }
// ---------- Extra Data ----------
float meter_get_frequency(void) {
float v = 0;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
v = meter_data.frequency;
xSemaphoreGive(meter_mutex);
}
return v;
}
float meter_get_power_factor(void) {
float v = 0;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
v = meter_data.power_factor;
xSemaphoreGive(meter_mutex);
}
return v;
}
float meter_get_total_energy(void) {
float v = 0;
if (xSemaphoreTake(meter_mutex, pdMS_TO_TICKS(10)) == pdTRUE) {
v = meter_data.total_energy;
xSemaphoreGive(meter_mutex);
}
return v;
} }