Files
chargeflow/components/network/src/network.c
2025-12-21 23:28:26 +00:00

543 lines
16 KiB
C
Executable File

// =========================
// wifi.c (ESP-IDF v5.4.2)
// =========================
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_log.h"
#include "esp_err.h"
#include "esp_wifi.h"
#include "esp_event.h"
#include "esp_netif.h"
#include "esp_mac.h"
#include "mdns.h"
#include "network_events.h"
#include "network.h"
// NEW:
#include "storage_service.h"
// -----------------------------------------------------------------------------
// Config
// -----------------------------------------------------------------------------
#define AP_SSID "plx-%02x%02x%02x"
#define MDNS_SSID "plx%02x"
#define NVS_NAMESPACE "wifi"
#define NVS_ENABLED "enabled"
#define NVS_SSID "ssid"
#define NVS_PASSWORD "password"
// Comprimentos com terminador
#define SSID_MAX_LEN 32
#define PASS_MAX_LEN 64
#define SSID_BUF_SZ (SSID_MAX_LEN + 1)
#define PASS_BUF_SZ (PASS_MAX_LEN + 1)
static const char *TAG = "wifi";
// Storage timeouts
#define STORE_TO pdMS_TO_TICKS(800)
#define STORE_FLUSH_TO pdMS_TO_TICKS(2000)
// -----------------------------------------------------------------------------
// Estado global
// -----------------------------------------------------------------------------
static esp_netif_t *sta_netif;
static esp_netif_t *ap_netif;
EventGroupHandle_t wifi_event_group;
// Backoff simples para reconexão STA
static int s_retry_count = 0;
static const int s_retry_max = 7;
// -----------------------------------------------------------------------------
// Helpers storage (robustos)
// -----------------------------------------------------------------------------
static esp_err_t store_flush_best_effort(void)
{
esp_err_t e = storage_flush_sync(STORE_FLUSH_TO);
if (e != ESP_OK)
ESP_LOGW(TAG, "storage_flush_sync failed: %s", esp_err_to_name(e));
return e;
}
static esp_err_t store_set_u8_best_effort(const char *ns, const char *key, uint8_t v)
{
for (int attempt = 0; attempt < 3; ++attempt)
{
esp_err_t e = storage_set_u8_async(ns, key, v);
if (e == ESP_OK)
return ESP_OK;
if (e == ESP_ERR_TIMEOUT)
{
(void)store_flush_best_effort();
vTaskDelay(pdMS_TO_TICKS(10));
continue;
}
return e;
}
return ESP_ERR_TIMEOUT;
}
static esp_err_t store_set_str_best_effort(const char *ns, const char *key, const char *s)
{
for (int attempt = 0; attempt < 3; ++attempt)
{
esp_err_t e = storage_set_str_async(ns, key, s);
if (e == ESP_OK)
return ESP_OK;
if (e == ESP_ERR_TIMEOUT)
{
(void)store_flush_best_effort();
vTaskDelay(pdMS_TO_TICKS(10));
continue;
}
return e;
}
return ESP_ERR_TIMEOUT;
}
// Lê string de forma segura (lê para buffer grande e depois trunca para out)
// Nota: isto ajuda se houver lixo antigo no NVS com strings maiores do que o esperado.
static esp_err_t store_get_str_safe(const char *ns, const char *key, char *out, size_t out_sz)
{
if (!out || out_sz == 0)
return ESP_ERR_INVALID_ARG;
out[0] = '\0';
// buffer grande (sem heap): usa o máximo definido no storage_service
char tmp[STORAGE_MAX_VALUE_BYTES + 1];
memset(tmp, 0, sizeof(tmp));
esp_err_t e = storage_get_str_sync(ns, key, tmp, sizeof(tmp), STORE_TO);
if (e == ESP_ERR_NOT_FOUND)
{
out[0] = '\0';
return ESP_OK;
}
if (e != ESP_OK)
{
out[0] = '\0';
return e;
}
size_t n = strnlen(tmp, out_sz - 1); // no máximo out_sz-1
memcpy(out, tmp, n);
out[n] = '\0';
return ESP_OK;
}
// -----------------------------------------------------------------------------
// Eventos
// -----------------------------------------------------------------------------
static void event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data)
{
(void)arg;
if (event_base == WIFI_EVENT)
{
switch (event_id)
{
case WIFI_EVENT_AP_STACONNECTED:
{
ESP_LOGI(TAG, "AP: STA connected");
wifi_event_ap_staconnected_t *event = (wifi_event_ap_staconnected_t *)event_data;
ESP_LOGI(TAG, "WiFi AP " MACSTR " join, AID=%d", MAC2STR(event->mac), event->aid);
xEventGroupClearBits(wifi_event_group, WIFI_AP_DISCONNECTED_BIT);
xEventGroupSetBits(wifi_event_group, WIFI_AP_CONNECTED_BIT);
break;
}
case WIFI_EVENT_AP_STADISCONNECTED:
{
ESP_LOGI(TAG, "AP: STA disconnected");
wifi_event_ap_stadisconnected_t *event = (wifi_event_ap_stadisconnected_t *)event_data;
ESP_LOGI(TAG, "WiFi AP " MACSTR " leave, AID=%d", MAC2STR(event->mac), event->aid);
xEventGroupClearBits(wifi_event_group, WIFI_AP_CONNECTED_BIT);
xEventGroupSetBits(wifi_event_group, WIFI_AP_DISCONNECTED_BIT);
break;
}
case WIFI_EVENT_STA_START:
{
ESP_LOGI(TAG, "STA start");
s_retry_count = 0;
esp_wifi_connect();
break;
}
case WIFI_EVENT_STA_CONNECTED:
{
ESP_LOGI(TAG, "STA associated (L2 connected)");
esp_event_post(NETWORK_EVENTS,
NETWORK_EVENT_STA_CONNECTED,
NULL,
0,
portMAX_DELAY);
break;
}
case WIFI_EVENT_STA_DISCONNECTED:
{
xEventGroupClearBits(wifi_event_group, WIFI_STA_CONNECTED_BIT);
xEventGroupSetBits(wifi_event_group, WIFI_STA_DISCONNECTED_BIT);
wifi_event_sta_disconnected_t *ev = (wifi_event_sta_disconnected_t *)event_data;
ESP_LOGW(TAG, "STA disconnected, reason=%d", ev ? ev->reason : -1);
esp_event_post(NETWORK_EVENTS,
NETWORK_EVENT_STA_DISCONNECTED,
ev,
ev ? sizeof(*ev) : 0,
portMAX_DELAY);
if (s_retry_count < s_retry_max)
{
esp_err_t err = esp_wifi_connect();
if (err == ESP_OK)
{
s_retry_count++;
ESP_LOGI(TAG, "Retrying connection (%d/%d)", s_retry_count, s_retry_max);
}
else
{
ESP_LOGW(TAG, "esp_wifi_connect failed (%s)", esp_err_to_name(err));
}
}
else
{
ESP_LOGE(TAG, "Max retries reached");
}
break;
}
default:
break;
}
}
else if (event_base == IP_EVENT)
{
if (event_id == IP_EVENT_STA_GOT_IP)
{
ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data;
ESP_LOGI(TAG, "WiFi STA got ip: " IPSTR, IP2STR(&event->ip_info.ip));
xEventGroupClearBits(wifi_event_group, WIFI_STA_DISCONNECTED_BIT);
xEventGroupSetBits(wifi_event_group, WIFI_STA_CONNECTED_BIT);
s_retry_count = 0;
esp_event_post(NETWORK_EVENTS,
NETWORK_EVENT_STA_GOT_IP,
&event->ip_info,
sizeof(event->ip_info),
portMAX_DELAY);
}
else if (event_id == IP_EVENT_STA_LOST_IP)
{
ESP_LOGW(TAG, "STA lost IP");
esp_event_post(NETWORK_EVENTS,
NETWORK_EVENT_STA_LOST_IP,
NULL,
0,
portMAX_DELAY);
}
}
}
// -----------------------------------------------------------------------------
// Config STA/AP
// -----------------------------------------------------------------------------
static void sta_set_config(void)
{
ESP_LOGI(TAG, "sta_set_config");
if (!wifi_get_enabled())
return;
wifi_config_t wifi_config = {0};
wifi_config.sta.pmf_cfg.capable = true;
wifi_config.sta.pmf_cfg.required = false;
char ssid_buf[SSID_BUF_SZ] = {0};
char pass_buf[PASS_BUF_SZ] = {0};
wifi_get_ssid(ssid_buf);
wifi_get_password(pass_buf);
size_t ssid_len = strnlen(ssid_buf, SSID_MAX_LEN);
memcpy(wifi_config.sta.ssid, ssid_buf, ssid_len);
size_t pass_len = strnlen(pass_buf, 63);
memcpy(wifi_config.sta.password, pass_buf, pass_len);
if (pass_len <= 63)
wifi_config.sta.password[pass_len] = '\0';
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_config));
}
static void ap_set_config(void)
{
ESP_LOGI(TAG, "ap_set_config");
wifi_config_t wifi_ap_config = {0};
wifi_ap_config.ap.max_connection = 1;
wifi_ap_config.ap.authmode = WIFI_AUTH_OPEN;
uint8_t mac[6];
esp_wifi_get_mac(WIFI_IF_AP, mac);
snprintf((char *)wifi_ap_config.ap.ssid, sizeof(wifi_ap_config.ap.ssid),
AP_SSID, mac[3], mac[4], mac[5]);
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_AP));
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_AP, &wifi_ap_config));
}
// -----------------------------------------------------------------------------
// Arranque STA
// -----------------------------------------------------------------------------
static void sta_try_start(void)
{
ESP_LOGI(TAG, "sta_try_start");
sta_set_config();
if (wifi_get_enabled())
{
ESP_LOGI(TAG, "Starting STA");
esp_err_t e = esp_wifi_start();
if (e != ESP_OK && e != ESP_ERR_WIFI_CONN)
{
ESP_LOGW(TAG, "esp_wifi_start returned %s", esp_err_to_name(e));
}
xEventGroupSetBits(wifi_event_group, WIFI_STA_MODE_BIT);
}
}
// -----------------------------------------------------------------------------
// API pública
// -----------------------------------------------------------------------------
void wifi_ini(void)
{
ESP_LOGI(TAG, "Wifi init");
// garante storage pronto (não assume NVS handle aberto aqui)
esp_err_t se = storage_service_init();
if (se != ESP_OK)
ESP_LOGW(TAG, "storage_service_init failed: %s", esp_err_to_name(se));
wifi_event_group = xEventGroupCreate();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ap_netif = esp_netif_create_default_wifi_ap();
sta_netif = esp_netif_create_default_wifi_sta();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
uint8_t mac[6];
esp_wifi_get_mac(WIFI_IF_STA, mac);
char chargeid[16];
snprintf(chargeid, sizeof(chargeid), MDNS_SSID, 0);
ESP_ERROR_CHECK(esp_netif_set_hostname(sta_netif, chargeid));
ESP_ERROR_CHECK(esp_netif_set_hostname(ap_netif, chargeid));
ESP_ERROR_CHECK(mdns_init());
ESP_ERROR_CHECK(mdns_hostname_set(chargeid));
ESP_ERROR_CHECK(mdns_instance_name_set("EVSE controller"));
sta_try_start();
}
esp_netif_t *wifi_get_sta_netif(void) { return sta_netif; }
esp_netif_t *wifi_get_ap_netif(void) { return ap_netif; }
esp_err_t wifi_set_config(bool enabled, const char *ssid, const char *password)
{
ESP_LOGI(TAG, "wifi_set_config(enabled=%d)", enabled);
// Validação
if (enabled)
{
if (ssid && (strlen(ssid) == 0 || strlen(ssid) > SSID_MAX_LEN))
{
ESP_LOGE(TAG, "SSID out of range");
return ESP_ERR_INVALID_ARG;
}
if (!ssid)
{
char cur_ssid[SSID_BUF_SZ] = {0};
wifi_get_ssid(cur_ssid);
if (strlen(cur_ssid) == 0)
{
ESP_LOGE(TAG, "Required SSID");
return ESP_ERR_INVALID_ARG;
}
}
if (password)
{
size_t lp = strlen(password);
if (lp != 0 && (lp < 8 || lp > 63))
{
ESP_LOGE(TAG, "Password length must be 8..63");
return ESP_ERR_INVALID_ARG;
}
}
}
// Persiste via storage_service
esp_err_t err = store_set_u8_best_effort(NVS_NAMESPACE, NVS_ENABLED, enabled ? 1 : 0);
if (err != ESP_OK)
return err;
if (ssid)
{
err = store_set_str_best_effort(NVS_NAMESPACE, NVS_SSID, ssid);
if (err != ESP_OK)
return err;
}
if (password)
{
err = store_set_str_best_effort(NVS_NAMESPACE, NVS_PASSWORD, password);
if (err != ESP_OK)
return err;
}
// Força persistência (para sobreviver a reboot imediato)
(void)store_flush_best_effort();
// Reinicia modo
ESP_LOGI(TAG, "Stopping AP/STA");
xEventGroupClearBits(wifi_event_group, WIFI_AP_MODE_BIT | WIFI_STA_MODE_BIT);
esp_err_t e = esp_wifi_stop();
if (e != ESP_OK && e != ESP_ERR_WIFI_NOT_INIT && e != ESP_ERR_WIFI_STOP_STATE)
{
ESP_LOGW(TAG, "esp_wifi_stop returned %s", esp_err_to_name(e));
}
sta_try_start();
return ESP_OK;
}
uint16_t wifi_scan(wifi_scan_ap_t *scan_aps)
{
ESP_LOGI(TAG, "wifi_scan");
if (!scan_aps)
return 0;
uint16_t number = WIFI_SCAN_SCAN_LIST_SIZE;
wifi_ap_record_t ap_info[WIFI_SCAN_SCAN_LIST_SIZE];
uint16_t ap_count = 0;
memset(ap_info, 0, sizeof(ap_info));
esp_err_t err = esp_wifi_scan_start(NULL, true);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "esp_wifi_scan_start failed (%s)", esp_err_to_name(err));
return 0;
}
err = esp_wifi_scan_get_ap_records(&number, ap_info);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "esp_wifi_scan_get_ap_records failed (%s)", esp_err_to_name(err));
return 0;
}
err = esp_wifi_scan_get_ap_num(&ap_count);
if (err != ESP_OK)
{
ESP_LOGW(TAG, "esp_wifi_scan_get_ap_num failed (%s)", esp_err_to_name(err));
return 0;
}
ESP_LOGI(TAG, "wifi_scan --- %d", ap_count);
for (int i = 0; (i < WIFI_SCAN_SCAN_LIST_SIZE) && (i < ap_count); i++)
{
snprintf(scan_aps[i].ssid, sizeof(scan_aps[i].ssid), "%s", (const char *)ap_info[i].ssid);
scan_aps[i].rssi = ap_info[i].rssi;
scan_aps[i].auth = ap_info[i].authmode != WIFI_AUTH_OPEN;
}
return ap_count;
}
bool wifi_get_enabled(void)
{
uint8_t value = 0;
esp_err_t e = storage_get_u8_sync(NVS_NAMESPACE, NVS_ENABLED, &value, STORE_TO);
if (e == ESP_ERR_NOT_FOUND)
return false;
if (e != ESP_OK)
{
ESP_LOGW(TAG, "storage_get_u8_sync(enabled) failed (%s), assuming disabled", esp_err_to_name(e));
return false;
}
return (value != 0);
}
void wifi_get_ssid(char *value)
{
if (!value)
return;
(void)store_get_str_safe(NVS_NAMESPACE, NVS_SSID, value, SSID_BUF_SZ);
}
void wifi_get_password(char *value)
{
if (!value)
return;
(void)store_get_str_safe(NVS_NAMESPACE, NVS_PASSWORD, value, PASS_BUF_SZ);
}
void wifi_ap_start(void)
{
ESP_LOGI(TAG, "Starting AP");
esp_event_post(NETWORK_EVENTS, NETWORK_EVENT_AP_STARTED, NULL, 0, portMAX_DELAY);
xEventGroupClearBits(wifi_event_group, WIFI_STA_MODE_BIT);
esp_wifi_stop();
ap_set_config();
esp_err_t e = esp_wifi_start();
if (e != ESP_OK && e != ESP_ERR_WIFI_CONN)
{
ESP_LOGW(TAG, "esp_wifi_start (AP) returned %s", esp_err_to_name(e));
}
xEventGroupSetBits(wifi_event_group, WIFI_AP_MODE_BIT);
}
void wifi_ap_stop(void)
{
ESP_LOGI(TAG, "Stopping AP");
esp_event_post(NETWORK_EVENTS, NETWORK_EVENT_AP_STOP, NULL, 0, portMAX_DELAY);
xEventGroupClearBits(wifi_event_group, WIFI_AP_MODE_BIT);
esp_wifi_stop();
sta_try_start();
}
bool wifi_is_ap(void)
{
if (!wifi_event_group)
return false;
EventBits_t bits = xEventGroupGetBits(wifi_event_group);
return (bits & WIFI_AP_MODE_BIT) != 0;
}