Files
chargeflow/components/meter_manager/driver/meter_orno/meter_dds661.c
2025-11-20 07:45:00 +00:00

290 lines
8.7 KiB
C
Executable File

// components/meter_manager/driver/meter_dds661.c
#include "meter_dds661.h"
#include "modbus_params.h"
#include "mbcontroller.h"
#include "meter_events.h"
#include "esp_log.h"
#include "driver/uart.h"
#include <string.h>
#include <math.h>
#define TAG "serial_mdb_dds661"
// ======= UART/Modbus config =======
#define MB_PORT_NUM 2
#define MB_DEV_SPEED 9600
// Ajuste os pinos conforme seu hardware (evite GPIO2 para RTS/DE/RE se possível)
#define MB_UART_TXD 17
#define MB_UART_RXD 16
#define MB_UART_RTS 2 // pino DE/RE do transceiver RS-485
#define UPDATE_INTERVAL (3000 / portTICK_PERIOD_MS)
#define POLL_INTERVAL (120 / portTICK_PERIOD_MS)
// ======= Helpers típicos do teu projeto =======
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define STR(x) ((const char *)(x))
#define OPTS(min, max, step) {.opt1 = min, .opt2 = max, .opt3 = step}
// ======= Estado =======
static bool is_initialized = false;
static TaskHandle_t meter_task = NULL;
// ======= CIDs (sequenciais) =======
enum
{
CID_VOLTAGE = 0,
CID_CURRENT,
CID_ACTIVE_POWER_KW,
CID_POWER_FACTOR,
CID_FREQUENCY,
CID_TOTAL_ACTIVE_ENERGY_KWH,
CID_COUNT
};
// ======= Mapa de registradores (Input Registers; FC=0x04) =======
// Endereços típicos para DDS-661 (float32):
#define REG_VOLTAGE 0x0000 // V (float32)
#define REG_CURRENT 0x0008 // A (float32)
#define REG_ACTIVE_POWER_KW 0x0012 // kW (float32)
#define REG_POWER_FACTOR 0x002A // PF (float32)
#define REG_FREQUENCY 0x0036 // Hz (float32)
#define REG_E_ACTIVE_KWH 0x0100 // kWh (float32)
// ======= Tabela de parâmetros (Data Dictionary) =======
const mb_parameter_descriptor_t device_parameters_dds661[] = {
{CID_VOLTAGE, "Voltage", "V", 1,
MB_PARAM_INPUT, REG_VOLTAGE, 2, HOLD_OFFSET(l1_voltage),
PARAM_TYPE_FLOAT_CDAB, 4, OPTS(0, 300, 0.1), PAR_PERMS_READ},
{CID_CURRENT, "Current", "A", 1,
MB_PARAM_INPUT, REG_CURRENT, 2, HOLD_OFFSET(l1_current),
PARAM_TYPE_FLOAT_CDAB, 4, OPTS(0, 100, 0.1), PAR_PERMS_READ},
{CID_ACTIVE_POWER_KW, "Active Power", "kW", 1,
MB_PARAM_INPUT, REG_ACTIVE_POWER_KW, 2, HOLD_OFFSET(active_power),
PARAM_TYPE_FLOAT_CDAB, 4, OPTS(-100, 100, 0.01), PAR_PERMS_READ},
{CID_POWER_FACTOR, "Power Factor", "", 1,
MB_PARAM_INPUT, REG_POWER_FACTOR, 2, HOLD_OFFSET(power_factor),
PARAM_TYPE_FLOAT_CDAB, 4, OPTS(-1, 1, 0.001), PAR_PERMS_READ},
{CID_FREQUENCY, "Frequency", "Hz", 1,
MB_PARAM_INPUT, REG_FREQUENCY, 2, HOLD_OFFSET(frequency),
PARAM_TYPE_FLOAT_CDAB, 4, OPTS(0, 100, 0.1), PAR_PERMS_READ},
{CID_TOTAL_ACTIVE_ENERGY_KWH, "Total Active Energy", "kWh", 1,
MB_PARAM_INPUT, REG_E_ACTIVE_KWH, 2, HOLD_OFFSET(active_energy),
PARAM_TYPE_FLOAT_CDAB, 4, OPTS(0, 1000000, 0.01), PAR_PERMS_READ},
};
const uint16_t num_device_parameters_dds661 =
sizeof(device_parameters_dds661) / sizeof(device_parameters_dds661[0]);
// ======= Ponteiro para buffer destino =======
static void *get_param_ptr(const mb_parameter_descriptor_t *param)
{
if (!param || param->param_offset == 0)
return NULL;
return ((uint8_t *)&holding_reg_params + param->param_offset - 1);
}
// ======= Tarefa de aquisição =======
static void serial_mdb_task(void *param)
{
esp_err_t err;
const mb_parameter_descriptor_t *desc = NULL;
// Valores lidos
float v = 0.0f; // V
float i = 0.0f; // A
float pf = 0.0f; // -
float hz = 0.0f; // Hz
float e_kwh = 0.0f; // kWh
float p_kw = 0.0f; // kW
// Buffers para o evento
float voltage[3] = {0};
float current[3] = {0};
int watt[3] = {0};
while (1)
{
for (uint16_t cid = 0; cid < num_device_parameters_dds661; cid++)
{
err = mbc_master_get_cid_info(cid, &desc);
if (err != ESP_OK || !desc)
{
ESP_LOGE(TAG, "get_cid_info(%u) failed: %s", cid, esp_err_to_name(err));
continue;
}
void *data_ptr = get_param_ptr(desc);
if (!data_ptr)
{
ESP_LOGE(TAG, "CID %u (%s): null data_ptr", cid, desc->param_key);
continue;
}
uint8_t type = 0;
err = mbc_master_get_parameter(cid, (char *)desc->param_key, (uint8_t *)data_ptr, &type);
if (err != ESP_OK)
{
ESP_LOGE(TAG, "CID %u (%s) read failed: %s", cid, desc->param_key, esp_err_to_name(err));
vTaskDelay(POLL_INTERVAL);
continue;
}
// Dump dos bytes recebidos (4 bytes do float bruto)
uint8_t raw[4];
memcpy(raw, data_ptr, 4);
ESP_LOGD(TAG, "CID %u (%s) raw bytes: %02X %02X %02X %02X",
cid, desc->param_key, raw[0], raw[1], raw[2], raw[3]);
float val = 0.0f;
val = *(float *)data_ptr;
ESP_LOGD(TAG, "%s: %.3f %s", desc->param_key, val, desc->param_units);
switch (cid)
{
case CID_VOLTAGE:
v = val;
voltage[0] = v;
break;
case CID_CURRENT:
i = val;
current[0] = i;
break;
case CID_POWER_FACTOR:
pf = val;
break;
case CID_FREQUENCY:
hz = val;
break;
case CID_ACTIVE_POWER_KW:
{
p_kw = val;
float p_w = p_kw * 1000.0f;
int pwi = (int)lrintf(p_w);
watt[0] = pwi;
watt[1] = pwi;
watt[2] = pwi;
break;
}
case CID_TOTAL_ACTIVE_ENERGY_KWH:
e_kwh = val;
break;
default:
break;
}
vTaskDelay(POLL_INTERVAL);
}
meter_event_data_t evt = {
.frequency = hz,
.power_factor = pf,
.total_energy = e_kwh,
.source = "GRID",
};
memcpy(evt.vrms, voltage, sizeof(evt.vrms));
memcpy(evt.irms, current, sizeof(evt.irms));
memcpy(evt.watt, watt, sizeof(evt.watt));
esp_event_post(METER_EVENT, METER_EVENT_DATA_READY, &evt, sizeof(evt), pdMS_TO_TICKS(10));
vTaskDelay(UPDATE_INTERVAL);
}
}
// ======= API pública =======
esp_err_t meter_dds661_init(void)
{
if (is_initialized)
{
ESP_LOGW(TAG, "meter_dds661 already initialized");
return ESP_ERR_INVALID_STATE;
}
ESP_LOGI(TAG, "meter_dds661_init");
mb_communication_info_t comm = {
.port = MB_PORT_NUM,
.mode = MB_MODE_RTU,
.baudrate = MB_DEV_SPEED,
.parity = UART_PARITY_EVEN, // DDS-661: 9600 8E1
};
void *handler = NULL;
ESP_ERROR_CHECK(mbc_master_init(MB_PORT_SERIAL_MASTER, &handler));
ESP_ERROR_CHECK(mbc_master_setup(&comm));
// Pinos e parâmetros básicos
ESP_ERROR_CHECK(uart_set_pin(MB_PORT_NUM, MB_UART_TXD, MB_UART_RXD, MB_UART_RTS, UART_PIN_NO_CHANGE));
ESP_ERROR_CHECK(uart_set_word_length(MB_PORT_NUM, UART_DATA_8_BITS));
ESP_ERROR_CHECK(uart_set_hw_flow_ctrl(MB_PORT_NUM, UART_HW_FLOWCTRL_DISABLE, 0));
ESP_ERROR_CHECK(uart_set_stop_bits(MB_PORT_NUM, UART_STOP_BITS_1));
// >>> IMPORTANTE: start antes do set_mode <<<
ESP_ERROR_CHECK(mbc_master_start());
// Só agora muda para RS485 half duplex
ESP_ERROR_CHECK(uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX));
// (opcional) logs de debug Modbus
esp_log_level_set("MB_CONTROLLER_MASTER", ESP_LOG_DEBUG);
esp_log_level_set("MB_PORT_COMMON", ESP_LOG_DEBUG);
esp_log_level_set("MB_SERIAL_MASTER", ESP_LOG_DEBUG);
vTaskDelay(pdMS_TO_TICKS(5));
ESP_ERROR_CHECK(mbc_master_set_descriptor(device_parameters_dds661, num_device_parameters_dds661));
is_initialized = true;
return ESP_OK;
}
esp_err_t meter_dds661_start(void)
{
if (!is_initialized)
{
ESP_LOGE(TAG, "meter_dds661 not initialized");
return ESP_ERR_INVALID_STATE;
}
if (meter_task == NULL)
{
xTaskCreate(serial_mdb_task, "meter_dds661_task", 4096, NULL, 3, &meter_task);
ESP_LOGI(TAG, "meter_dds661 task started");
}
return ESP_OK;
}
void meter_dds661_stop(void)
{
if (!is_initialized)
{
ESP_LOGW(TAG, "meter_dds661 not initialized");
return;
}
ESP_LOGI(TAG, "Stopping meter_dds661");
// 1) Destrói o master primeiro
esp_err_t err = mbc_master_destroy();
if (err != ESP_OK)
{
ESP_LOGW(TAG, "mbc_master_destroy() returned %s", esp_err_to_name(err));
}
// 2) Depois solta a UART
uart_driver_delete(MB_PORT_NUM);
is_initialized = false;
}