Files
chargeflow/components/evse/evse_pilot.c
2025-06-25 06:34:03 +01:00

175 lines
5.3 KiB
C
Executable File

#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "driver/ledc.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_rom_sys.h"
#include "evse_pilot.h"
#include "adc121s021_dma.h"
#include "board_config.h"
#define PILOT_PWM_TIMER LEDC_TIMER_0
#define PILOT_PWM_CHANNEL LEDC_CHANNEL_0
#define PILOT_PWM_SPEED_MODE LEDC_LOW_SPEED_MODE
#define PILOT_PWM_DUTY_RES LEDC_TIMER_10_BIT
#define PILOT_PWM_MAX_DUTY 1023
#define NUM_PILOT_SAMPLES 100
#define MAX_SAMPLE_ATTEMPTS 1000
#define PILOT_EXTREME_PERCENT 10 // 10% superior e inferior
// ADC121S021 setup
#define ADC121_VREF_MV 3300 // AJUSTE conforme Vref do seu hardware!
#define ADC121_MAX 4095 // 12 bits
static const char *TAG = "evse_pilot";
// Memoização de estado para evitar comandos/logs desnecessários
static int last_pilot_level = -1;
static uint32_t last_pwm_duty = 0;
// Função para converter leitura bruta do ADC para mV
static int adc_raw_to_mv(uint16_t raw) {
return (raw * ADC121_VREF_MV) / ADC121_MAX;
}
void pilot_init(void)
{
// PWM (LEDC) configuração
ledc_timer_config_t ledc_timer = {
.speed_mode = PILOT_PWM_SPEED_MODE,
.timer_num = PILOT_PWM_TIMER,
.duty_resolution = PILOT_PWM_DUTY_RES,
.freq_hz = 1000,
.clk_cfg = LEDC_AUTO_CLK
};
ESP_ERROR_CHECK(ledc_timer_config(&ledc_timer));
ledc_channel_config_t ledc_channel = {
.speed_mode = PILOT_PWM_SPEED_MODE,
.channel = PILOT_PWM_CHANNEL,
.timer_sel = PILOT_PWM_TIMER,
.intr_type = LEDC_INTR_DISABLE,
.gpio_num = board_config.pilot_pwm_gpio,
.duty = 0,
.hpoint = 0
};
ESP_ERROR_CHECK(ledc_channel_config(&ledc_channel));
ESP_ERROR_CHECK(ledc_stop(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL, 0));
ESP_ERROR_CHECK(ledc_fade_func_install(0));
// Inicializa ADC121S021 externo
adc121s021_dma_init();
}
void pilot_set_level(bool level)
{
if (last_pilot_level == level) return; // só muda se necessário
last_pilot_level = level;
ESP_LOGI(TAG, "Set level %d", level);
ledc_stop(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL, level ? 1 : 0);
last_pwm_duty = 0; // PWM parado
}
void pilot_set_amps(uint16_t amps)
{
if (amps < 60 || amps > 800) {
ESP_LOGE(TAG, "Invalid ampere value: %d A*10", amps);
return;
}
uint32_t duty;
if (amps <= 510) {
duty = (PILOT_PWM_MAX_DUTY * amps) / 600;
} else {
duty = ((PILOT_PWM_MAX_DUTY * amps) / 2500) + (64 * (PILOT_PWM_MAX_DUTY / 100));
}
if (duty > PILOT_PWM_MAX_DUTY) duty = PILOT_PWM_MAX_DUTY;
if (last_pilot_level == 0 && last_pwm_duty == duty) return;
last_pilot_level = 0;
last_pwm_duty = duty;
ESP_LOGI(TAG, "Set amp %dA*10 -> duty %lu/%d", amps, duty, PILOT_PWM_MAX_DUTY);
ledc_set_duty(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL, duty);
ledc_update_duty(PILOT_PWM_SPEED_MODE, PILOT_PWM_CHANNEL);
}
static int compare_int(const void *a, const void *b) {
return (*(int *)a - *(int *)b);
}
static int select_low_median_qsort(int *src, int n, int percent) {
int k = (n * percent) / 100;
if (k == 0) k = 1;
int *copy = alloca(n * sizeof(int));
memcpy(copy, src, n * sizeof(int));
qsort(copy, n, sizeof(int), compare_int);
return copy[k / 2];
}
static int select_high_median_qsort(int *src, int n, int percent) {
int k = (n * percent) / 100;
if (k == 0) k = 1;
int *copy = alloca(n * sizeof(int));
memcpy(copy, src, n * sizeof(int));
qsort(copy, n, sizeof(int), compare_int);
return copy[n - k + (k / 2)];
}
void pilot_measure(pilot_voltage_t *up_voltage, bool *down_voltage_n12)
{
ESP_LOGD(TAG, "pilot_measure");
int samples[NUM_PILOT_SAMPLES];
int collected = 0, attempts = 0;
uint16_t adc_sample = 0;
// Lê samples usando ADC121S021 externo
while (collected < NUM_PILOT_SAMPLES && attempts < MAX_SAMPLE_ATTEMPTS) {
adc_sample = 0;
if (adc121s021_dma_get_sample(&adc_sample)) {
samples[collected++] = adc_sample;
esp_rom_delay_us(10);
} else {
esp_rom_delay_us(100);
attempts++;
}
}
if (collected < NUM_PILOT_SAMPLES) {
ESP_LOGW(TAG, "Timeout on sample read (%d/%d)", collected, NUM_PILOT_SAMPLES);
*up_voltage = PILOT_VOLTAGE_1;
*down_voltage_n12 = false;
return;
}
int high_raw = select_high_median_qsort(samples, collected, PILOT_EXTREME_PERCENT);
int low_raw = select_low_median_qsort(samples, collected, PILOT_EXTREME_PERCENT);
int high_mv = adc_raw_to_mv(high_raw);
int low_mv = adc_raw_to_mv(low_raw);
// Aplica thresholds definidos em board_config (em mV)
if (high_mv >= board_config.pilot_down_threshold_12)
*up_voltage = PILOT_VOLTAGE_12;
else if (high_mv >= board_config.pilot_down_threshold_9)
*up_voltage = PILOT_VOLTAGE_9;
else if (high_mv >= board_config.pilot_down_threshold_6)
*up_voltage = PILOT_VOLTAGE_6;
else if (high_mv >= board_config.pilot_down_threshold_3)
*up_voltage = PILOT_VOLTAGE_3;
else
*up_voltage = PILOT_VOLTAGE_1;
*down_voltage_n12 = (low_mv <= board_config.pilot_down_threshold_n12);
ESP_LOGD(TAG, "Final: up_voltage=%d, down_voltage_n12=%d", *up_voltage, *down_voltage_n12);
}